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Introduction

We’ll look at noncooperative games which are played only once, which involve only a finite number of
players, and which give each player only a finite number of actions to choose from. We’ll consider what
is called the strategic (or normal) form of a game. Although our formal treatment will be more general,
our exemplary paradigm will be a two-person, simultaneous-move matrix game.

The strategic (or “normal”) form of a game is a natural and adequate description of a simultaneous-
move game. It is also a useful platform on which to perform at least some of our analysis of games
which have a more complicated temporal and information structure than a simultaneous-move game has.
(In order to perform the remaining analysis of these games, however, we’ll later introduce and use the
“extensive form.”)

We will define a strategic-form game in terms of its constituent parts: players, actions, and
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preferences. We will introduce the notion of mixed strategies, which are randomizations over actions.
Our first step in the analysis of these games will be to solve the Easy Part of Game Theory, viz. the
problem of what choice a rational player would make given her beliefs about the choices of her
opponents. Later we will turn to the Hard Part of Game Theory: what beliefs the players can rationally
hold concerning the choices of their opponents.

Individual strategies

We have a nonempty, finite set I of n˙nfi{1,2,…} players

I={1,…,n}. (1)

The i-th player, i˙I, has a nonempty set of strategies—her strategy space Si—available to her, from
which she can choose one strategy si˙Si.1 Note—as indicated by the “i” subscript—that each player has
her own strategy space Si. Therefore each player has access to her own possibly unique set of strategies.
We will assume that each player’s strategy space is finite.

When necessary we will refer to these as pure strategies in order to distinguish them from mixed
strategies, which are randomizations over pure strategies.

Example:

Consider a two-player game between Robin and Cleever. Suppose Robin has two actions available to
her: Up and Down. Then her strategy space SR would be

SR={Up, Down}.

When she plays the game she can choose only one of these actions. So her strategy sR would be either
sR=Up or sR=Down. Likewise, suppose that Cleever can move left, middle, or right. Then his strategy
space is

SC= {left, middle, right}.

Strategy profiles

For the time being it will be useful to imagine that all players pick their strategies at the same time:
player 1 picks some s1˙S1, player 2 picks some s2˙S2, etc. We can describe the set of strategies chosen
by the n players as the ordered n-tuple:2

                                                

1 A strategy need not refer to a single, simple, elemental action; in a game with temporal structure a strategy can be a very complex
sequence of actions which depend on the histories of simple actions taken by all other players. We will see this clearly when we learn to
transform an extensive-form description of a game into its strategic form. The name “strategic form” derives precisely because the
present formalism ignores all this potential complexity and considers the strategies as primitives of the theory (i.e. as units which cannot
be decomposed into simpler constituents).

2 In this introduction I’m using boldface notation to represent multicomponent entities in hopes that this will help you keep straight the
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s=(s1,…,sn). (2)

This n-dimensional vector of individual strategies is called a strategy profile  (or sometimes a strategy
combination). For every different combination of individual choices of strategies we would get a
different strategy profile s. The set of all such strategy profiles is called the space of strategy profiles S.
It is simply the Cartesian product of the strategy spaces Si for each player.3 We write it as4

SfiS1˜ÙÚÙ˜Sn= SiX
i=1

n

= SiX
i˙I

. (3)

Example (continued):

Considering Robin as player 1, if she chose sR=Down and Cleever chose sC=middle, then the resulting
strategy profile would be:

s=(Down, middle).

The space of all strategy profiles for this example is

S=SR˜SC={(Up,left),(Up,middle),(Up,right), (Down,left),(Down,middle),(Down,right)}.

Player i is often interested in what strategies the other n_1 players choose. We can represent such an
(n_1)-tuple of strategies, known as a deleted strategy profile, by5

s¥i= (s1,…,si¥1,siÁ1,…,sn). (4)

To each player i there corresponds a deleted strategy profile space S¥i, which is the space of all possible
strategy choices s¥i by her opponents of the form in (4), i.e.6

                                                                                                                                                                        

distinction between strategies, for example, and vectors of strategies. However, don’t get spoiled: most papers and texts in game theory
don’t do this. And I’ll stop doing it soon.

3 The Cartesian product (or direct product) of n sets is the collection of all ordered n-tuples such that the first elements of the n-tuples are
chosen from the first set, the second elements from the second set, etc. E.g., the set of Cartesian coordinates (x,y)˙Â2 of the plane is
just the Cartesian product of the real numbers Â with itself, i.e. Â2=Â˜Â. For another example, let A={1,2} and B={å,∫,∂}. Then
A˜B={(1,å), (1,∫), (1,∂), (2,å), (2,∫), (2,∂)}. More formally, A1˜Ú˜Am={(a1,…,am): Åi˙{1,…,m}, ai˙Ai}. When we form
the Cartesian product of m copies of the same set S, we simply write Sm=S˜Ú˜S.

4 Note that the player set I is ordered. We avoid ambiguity concerning the order in which the Cartesian product is formed when the
notation “Xi˙I” is used by adopting the obvious convention, which is expressed in this case by Xi=1

n .
5 In other words this is a strategy profile with one strategy (that of player i) deleted from it. The formal definition obviously does not

work quite right if i=1 or i=n, but the necessary modifications for these cases should be obvious.
6 Let A and B be sets. The difference (or relative complement) of A and B, denoted A\B, is the set of elements which are in A but not in B,

i.e. A\B={x˙A:ÙxâB}. The difference of A and B is also sometimes written as simply A_B. The set I\{i}={1,…,i_1,i+1,…,n},
when 1<i<n. Note that “I\i” and “{I}\{i}” are incorrect attempts at expressing this set.
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S¥ifiS1˜ÙÚÙ˜Si¥1˜SiÁ1˜Ú˜Sn= SjX
j=1
j≠i

n

= SjX
j˙I\{i}

. (5)

If we want to single out the strategy-decision problem for the particular player i, it is useful to write a
strategy profile s˙S as a combination of her strategy si˙Si and the deleted strategy profile s¥i˙S¥i of the
strategies of her opponents. So you will typically see

sfi(si,s¥i). (6)

As another example of this notation: (si,s¥i)=(s1,…,si¥1,si,siÁ1,…,sn). The usage in (6) is notationally
abusive.7 To avoid this we can define for each player i˙I a function ¯æ,æ˘i:ÙSi˜S¥i§S defined by
¯a,(b1,…,bi¥1,biÁ1,…,bn)˘i=(b1,…,bi¥1,a,biÁ1,…,bn).8 Therefore s=¯si,s¥i˘i.

Example (continued):

Because we’re using the letters R and C rather than the numbers 1 and 2 to identify the players in this
example and because there are only two players, the correspondence I’m about to draw might seem
artificial, but the idea should be clear. Robin’s deleted strategy profile is the profile of the strategies
chosen by Robin’s opponents, viz. by Cleever. Therefore

S¥R=SC={left, middle, right},

S¥C=SR={Up, Down}.

If s=(Up,Ùmiddle), then s¥R=middle and s¥C=Up.

Payoffs

The game is played by having all the players simultaneously pick their individual strategies. This set of
choices results in some strategy profile s˙S, which we call the outcome of the game. Each player has a
set of preferences over these outcomes s˙S. We assume that each player’s preferences over lotteries
over S can be represented by some von Neumann-Morgenstern utility function ui:ÙS§Â.9

At the conclusion of the game, then, each player i˙I receives a payoff uiªsº=uiª¯si,s¥i˘iº.10 Note that

                                                

7 The strategy-profile notation (si,s¥i) is abusive because the position into which the first argument is meant to be inserted depends on the
“i” subscripts. But we can’t depend on those subscripts being visible. For example, in a three-player game where
S1=S2=S3={U,M,D}, what strategy profile does (U,(M,D)) represent? It could mean any of (U,M,D), (M,U,D), or (M,D,U) for
i=1,2,3, respectively.

8 However, you will not see this ¯æ,æ˘i notation anywhere else… yet!
9 Therefore we can extend the domain of each ui to be the set of lotteries over outcomes in S . We perform the extension such that u i has

the expected-utility property: For any lottery over S  of the form p œ sÄ ( 1 _ p ) œ s’ , where s,s ’ ˙ S  and p˙[0,1],
uiªpœsÄ(1_p)œs’º=puiªsº+(1_p)uiªs’º.

10 I use the soon-to-be-the-universal-standard notation “ª…º” to enclose argument lists of functions, operators, etc., rather than the more
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the payoff each player receives depends not only on the strategy she picked but also on the strategies
which all the other players picked. In other words the payoff to any one player depends on the entire
strategy profile played. The individual payoffs for all the n players for a particular strategy profile s
define a payoff vector uªsº for that strategy profile uªsºfi(u1ªsº,…,unªsº); i.e. u:ÙS§Ân.

We can fully describe our game then by the triple (I,S,u), i.e. by a player set I, a space of strategy
profiles S, and a vector u of von Neumann-Morgenstern utility functions defined over S.

Denote by #Si the cardinality of i’s strategy space Si (i.e. the number of strategies in Si). The set of all
payoffs to all players can be represented by a #S1˜Ú˜#Sn matrix.11 Each cell in the payoff matrix
corresponds to a particular strategy profile and contains the n-tuple payoff vector which specifies the
payoff to each player when the strategy profile corresponding to that cell is played.12 When there are
only two players, this matrix is easily represented in two dimensions. The first player chooses a row and
the second player chooses a column. (See the next example.) The payoffs for three-player games can be
represented as #S3 matrices each of which is of dimension #S1˜#S2. In this case players 1 and 2 choose
a row and a column, respectively, and player 3 chooses the particular #S1˜#S2 matrix.

Example (continued):

We can cook up payoffs to Robin and Cleever for each possible strategy profile (i.e., for each
combination of individual strategy choices) to arrive at the following possible payoff matrix:

Figure 1: A typical payoff matrix.

where the abbreviations for the strategies which label the rows and columns have the obvious meanings.
The first payoff of each pair is by convention the one that Row (Robin) receives. The second is that
received by Column (Cleever).

To make explicit the connection between the payoff matrix and the payoff function uiªsº formalism
from above, we note two examples:

uRª(U,l)º=2,

                                                                                                                                                                        

common standard parentheses “(… )”. I believe my alternative convention helps to quickly distinguish between instances of
multiplication and instances of operation upon. For example, does “P(x+a)” mean a function P evaluated at (x+a)? Or does it mean a
number P multiplied by (x+a)? This distinction should be clear from context alone. However, economists are notably prone to the
notational abuses of 1 suppressing arguments and 2  identifying a function with its values.

11 The multidimensional matrix will have a side for each player, and the number of boxes along each side will be equal to the number of
strategies the corresponding player has available to her.

12 In the two-player case the payoff matrix is often called a bimatrix , because each element is an ordered pair.
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uCª(D,r)º=6.

Best responses to pure strategies

We typically assume in game theory that all players are rational. This means that each player will
choose an action which maximizes her expected utility given her beliefs about what actions the other
players will choose. The Easy Part of Game Theory is figuring out what a player will do given her
beliefs. This is the problem we focus on now. We ask the question: if player i knows (read “believes
with certainty”) which strategy each of her opponents will pick, what strategy should she pick?
Obviously, she should pick a best response to the plays of her opponents.

We say that a strategy siÆ˙Si for player i is a best response by i to the deleted strategy profile s¥i˙S¥i
iff13

(Åsi˙Si)  uiª¯siÆ,s¥i˘iº ≥ uiª¯si,s¥i˘iº, (7)

or, equivalently,14

si
*˙ uiª¯si,s¥i˘iºarg max

si˙Si

. (8)

What is this definition saying? With a few semesters of Varian behind you, this notation should not be
too obfuscating, but it’s worthwhile to go through it carefully. We’re fixing our attention on one
particular player i and we assume we know the strategy choice sj˙Sj made by each player j, j˙I\{i}. If
siÆ˙Si is a best response by player i to our assumed set of strategies s¥i˙S¥i played by the other n_1
players, then it must give player i a payoff—this is the left-hand side of the inequality (7)—at least as
large as she would get if she played any other strategy si˙Si from her set of allowed strategies Si. (This
is where the universal quantifier “Åsi˙Si” comes in.)

Note that the inequality in definition (7) is weak. The best response may not give player i strictly
more than any other choice of strategy.15 But it is at least tied with any other strategies. In other words,
you cannot always talk about the best response for a player to some set of plays by everyone else, but
you can always talk about a best response.16 Therefore we will not necessarily have a best-response
function which specifies player i’s unique best response to some deleted strategy profile s¥i˙S¥i, but we

                                                

13 “iff” fi “if and only if.”
14 Note that arg max refers to all values of the argument which maximize the objective function; therefore the arg max yields a set.
15 The weakness of the inequality also makes it possible to write the universal quantifier expression as “Åsi˙Si” rather than as

“Åsi˙Si\{siÆ}”.
16 For each s¥i˙S¥i, define g:Si§Â by gªsiº=uiª¯si,s¥i˘iº. Player i’s strategy space Si is a nonempty, finite set. Therefore its image under

g, viz. gªSiºfi{gªsiº:Ùsi˙Si}, is a nonempty, finite, ordered set and thus has a maximum and therefore has a maximizer in S i. Therefore a
best response exists.

Definition
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will have a best-response correspondence for player i, BRi:ÙS¥iéSi, where BRiªs¥iºÓSi specifies the
set of best responses for player i to an arbitrary deleted strategy profile s¥i˙S¥i.17,18 We can write

BRiªs¥iº={siÆ˙Si: siÆ is a best response by i to s¥i}, (9)

or, more formally,

BRiªs¥iº={siÆ˙Si:ÙÅsi˙Si,uiª¯siÆ,s¥i˘iº≥uiª¯si,s¥i˘iº},

= uiª¯si,s¥i˘iºarg max
si˙Si

.
(10)

(We will soon replace this definition of the best-response correspondence BRi with a more general one.)

Example (continued):

Let’s first find a best response for Robin given that Cleever plays “right.” She only has two strategies to
choose from: Up and Down. We first compute her payoffs for each alternative given that Cleever plays
right. We read these from the first element of the payoff pairs in the rightmost column of the matrix in
Figure 1:

uRªU,rº=0,

uRªD,rº=9.

Clearly playing Down gives Robin the strictly higher utility given that Cleever plays right. Therefore her
best response to Cleever’s sC=right is sRÆ=Down; we write BRRªrº={D}.19

Note that, against middle by Cleever, Robin is indifferent between Up and Down, because

uRªU,mº=uRªD,mº=7.

Therefore Robin has two best responses to middle; we write BRRªmº={U,D}.

Now let’s find a best response for Cleever given that Robin will play Down. Cleever has three
alternatives, so we compute his utility for each one, given that Robin plays Down, by picking the second
elements (because Cleever is the second player) from the payoff pairs in the bottom (“Down”) row. We
get

                                                

17 Recall that a correspondence ƒ:ÙXéY is a “set-valued function” or, more properly, a mapping which associates to every element x˙X
in the domain a subset of the target set Y. In other words, Åx˙X, ƒªxºÓY. The “é” symbol is used to distinguish between mapping
into subsets of the target set and mapping into the target set itself as the notation “§” for a function would imply.

18 Let A and B be sets. A is a subset of B if every element of A is an element of B. If A is a subset of B, we write AÓB. In this case, we
also say that B contains A, which we write BòA. Note from the definition that every set is a subset of itself; i.e. AÓA. Warning: Some
authors use the symbol “ÕÛ” for this meaning and reserve “Ó” for “proper subset;” viz. “AÓB fl(AÙÕÙB and A≠B).”

19 It might seem somewhat pedantic to include the braces in these cases where the best response correspondence has but a single value; I
do so because a correspondence is set valued.
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uCªD,lº=5,

uCªD,mº=4,

uCªD,rº=6.

We see that Cleever gets his maximum payoff, given that Robin is playing Down, when he plays right.
Therefore Cleever’s best response to sR=Down is sCÆ=right; i.e. BRCªDº={r}.

Similarly you can find the best response(s) for either player for any choice of strategy by the other
player. It is often a useful prelude to the analysis of a game to determine all the best responses to all
possible pure-strategy choices of the other players and to indicate them on the game matrix. For
example, in Figure 2, I have made boldface the payoffs which are maximal given the opponent’s pure
strategy. (I.e. Each of Robin’s bolded payoffs is maximal in its column; each of Cleever’s bolded
payoffs is maximal in its row.)

Figure 2: Robin vs. Cleever with best responses to others’ pure strategies indicated.

Mixed strategies

So far we have restricted our attention to pure strategies; these typically have direct economic
interpretations, and these are the actions which define the consequent payoffs. If every player plays a
pure strategy, then the payoffs to all players are deterministic—there is no uncertainty concerning the
payoffs resulting from a specified pure-strategy profile.

However, we will find it useful to expand each player’s possible choices to include mixed
strategies—randomizations over her pure strategies. A player will ultimately execute exactly one of her
pure-strategy choices. However, which particular pure strategy she executes is determined by a
randomization which is specified by her mixed strategy. Furthermore, we stipulate that each player’s
randomization is independent of the other players’ randomizations.20 When a player i˙I chooses a
mixed strategy, every other player j˙I\{i} might be uncertain about which pure strategy si˙Si the i-th
player will choose.21,22

                                                

20 This assumption is sometimes dropped. This leads to the notion of correlated strategies. See for example Aumann [1987].
21 Mixed strategies will be useful when we study equilibrium concepts for games. Equilibrium may fail to exist if we restrict ourselves to

pure strategies; existence is guaranteed if we have access to mixed strategies.
22 You might object to mixed strategies because you don’t believe that people would actually pick actions randomly. I advise that you just

hold on to your objections for a while and accept for the time being that the concept will prove useful. We will later return to a
discussion of the various interpretations which can be given to mixed strategies. This discussion will be more meaningful once you
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Formally, we say that a mixed strategy ßi for player i is a probability distribution over player i’s
pure-strategy choices Si; we write ßi˙ÇªSiº.23 If player i is playing the mixed strategy ßi and if si is one
of the pure strategies available to her, i.e. si˙Si, then the probability that she will choose the pure
strategy si is denoted by ßiªsiº. (So we could also view the mixed strategy ßi as a function from player
i’s pure-strategy space Si into the unit interval [0,1], i.e. ßi:ÙSi§[0,1].) We denote player i’s mixed-
strategy space by Íi. (We see that Íi=ÇªSiº.)

A mixed strategy specifies a value on [0,1] for each si˙Si. Each player chooses one and only one
pure strategy si˙Si in a single play of the game. Therefore any mixed strategy ßi˙ÇªSiº must be such
that the sum of the probabilities associated with the pure strategies is unity, i.e.

ßiªsiº∑
si̇ Si

=1. (11)

This property is indeed satisfied as a result of ßi being a probability distribution over Si. This is the
justification for using a probability distribution to represent a mixed strategy.

Analogously to our treatment of pure strategies: A mixed-strategy profile ß is an n-tuple of individual
mixed strategies, one for each player; e.g. ß=(ß1,…,ßn), where Åi˙I, ßi˙Íi. The space of mixed-
strategy profiles Í is just the Cartesian product of the individuals’ mixed-strategy spaces, viz. ÍfiXi˙IÙÍi.
Player i’s deleted mixed-strategy space is Í¥i=Xj˙I\{i}ÙÍj. We can also extend the domain of the ¯æ,æ˘i
function in the natural way so that ß=¯ßi,ß¥i˘i.24

We say that the support of the mixed strategy ßi˙Íi is the set of pure strategies to which ßi assigns
positive probability,25 i.e.

suppªßiº fi {si˙Si: ßiªsiº>0}. (12)

I.e. the support of the mixed strategy ßi consists of those pure strategies which player i could
conceivably play if she chose the mixed strategy ßi. For all ßi˙Íi, suppªßiºÓSi.

The unit simplex

At this point we pause to define the (k_1)-dimensional unit simplex. The (k_1)-dimensional unit
simplex is the set of k-vectors whose components 1 are all nonnegative and 2 sum to one.26,27 This

                                                                                                                                                                        

have seen how the theory develops; therefore this is a case where the motivation and interpretation are better left to follow rather than
precede the exposition.

23 When A is a finite set, ÇªAº is the set of all probability distributions over A.
24 I.e. we extend the domain of ¯æ,æ˘i to include Íi˜Í¥i so that ¯æ,æ˘i:Ù[(Si˜S¥i)¨(Íi˜Í¥i)]§(S¨Í), where the restriction of ̄ æ,æ˘i to

Si˜S¥i is ¯æ,æ˘i:Ù(Si˜S¥i)§S and the restriction to Íi˜Í¥i is ¯æ,æ˘i:Ù(Íi˜Í¥i)§Í. Both restrictions have the same symbolic definition:
¯ai,(b1,…,bi¥1,biÁ1,…,bn)˘i = (b1,…,bi¥1,ai,biÁ1,…,bn).

25 This is analogous to the support of a random variable, which is the closure of the set of values which are assigned positive probability.
26 Note that these two conditions taken together guarantee that each component is weakly less than one.
27 This simplex is composed of vectors with k components. It gets its name, viz. “k_1 ,” because it is a (k_1)-dimensional subspace

embedded in a k-dimensional world. (k_1) is also the number of “degrees of freedom” each vector has: Once k_1 components have
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concept is useful here because any probability distribution over a finite set must belong to a unit
simplex.28 Formally, we define the (k_1)-dimensional unit simplex as29

(13)

For example the vectors (1/3,0,2/3) and (0,0,1) are members of the two-dimensional unit simplex. The
vectors (1,1,1) and (2/3,2/3,¥1/3) are not. Figure 3 displays the zero-, one-, and two-dimensional
simplices.30

Mixed strategies are chosen from the unit simplex

An alternative to conceiving of a mixed strategy for player i as a function ßi:ÙSi§[0,1] is to think of it
as a #Si-vector of probabilities. For example, let m=#Si be the number of pure strategies available to
player i, and then index player i’s m pure strategies with a superscript: si

1,…,si
k,…,si

m. Then we can
write the mixed strategy ßi˙Íi as the m-tuple

ßi=(ßiªsi
1º,…,ßiªsi

mº). (14)

We know 1 for every pure strategy si˙Si, ßiªsiº˙[0,1] and 2 that (11) holds. Referring to definition
(13), then, we see that player i’s mixed strategy ßi belongs to the (#Si_1)-dimensional unit simplex. (In
(13), let k=#Si and, Åj˙{1,…,m}, let xj=ßiªsi

jº.)

                                                                                                                                                                        

been specified, the remaining component is already determined by the requirement that the components sum up to unity.
28 It is useful elsewhere as well. For example in general equilibrium theory prices are often normalized to lie within a unit simplex. Any

unit simplex is convex, and this allows the invocation of Brouwer’s or Kakutani’s fixed-point theorem in order to prove the existence of
an equilibrium price vector.

29 Recall that Â
k
+  is the nonnegative orthant of Âk, viz. {x˙Âk:Åi˙{1,…,k},xi≥0}.

30 To be perfectly clear… in Figure 3b the one-dimensional simplex is only the line segment connecting (0,1)§(1,0). In Figure 3c the
two-dimensional simplex is the triangular planar region.
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Figure 3: The (a) zero-, (b) one-, and (c) two-dimensional simplices.

Recall that a player’s pure-strategy space Si is the set of possible pure strategies she can choose and
that these strategies can be very complex descriptions of contingent actions. A player’s mixed-strategy
space Íi is simply the set of #Si-vectors belonging to the (#Si_1)-dimensional simplex Ç#Si¥1.31

Pure strategies are degenerate mixed strategies

Choosing a pure strategy s i is equivalent to choosing the mixed strategy (i.e. probability distribution
over pure strategies) which results with probability one in si. Therefore we see that every pure strategy
“is” a mixed strategy.32 We also say that a pure strategy is a degenerate mixed strategy.

To avoid the abuse of notation which results from writing si for the degenerate mixed strategy which
plays the pure strategy si with certainty, we can define ∂iªsiº˙ÇªSiº to be the player-i mixed strategy
which puts unit weight on si˙Si and zero weight on every other player-i pure strategy si’˙Si\{si}. We
formally define, for every player-i pure strategy si˙Si, the degenerate probability distribution ∂iªsiº by
specifying, for each player-i pure strategy si’˙Si, the probability ∂iªsiºªsi’º˙[0,1] which it attaches to si’:

(15)

(So we see that, for every si˙Si, ∂ iªsiº:ÙSi§{0,1}. Alternatively, we can write ∂i:ÙSi§ÇªSiº or
∂i:ÙSi

2§[0,1].)

                                                

31 It might appear at first that a player’s mixed-strategy space Íi is simpler than her pure-strategy space Si. Keep in mind however that Íi

is defined in terms of Si and so inherits all of Si’s complexity.
32 I put “is” in quotes because mathematically they are different objects. The pure strategy and the corresponding mixed strategy which

puts all probability on that pure strategy are equivalent in the sense that they result in exactly the same action by the player.
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A nondegenerate mixed strategy is one that is not pure. [Therefore ‰si˙Si such that ßiªsiº˙(0,1).] A
completely mixed or strictly positive strategy is one which puts positive weight on every strategy in the
player’s strategy space; i.e. ßi is completely mixed if Åsi˙Si, ßiªsiºÙ>Ù0.33 (Therefore suppÙßi=Si.)

Example (continued)

Let’s return to our game between Robin and Cleever to see how these mixed-strategy concepts are
represented in a less notational and less abstract setting. In Figure 4, I have indicated each player’s
mixed strategies with bracketed probabilities attached to the pure strategies.

Figure 4: Robin vs. Cleever with mixed strategies denoted.

Robin has two pure strategies, so the cardinality of her strategy space is 2; i.e. #SR=2. Therefore her
mixed strategies lie in a one-dimensional unit simplex; they can be described by a single parameter t.
We can write any of Robin’s mixed strategies as an ordered pair which specifies the probability with
which she would choose Up and Down, respectively, i.e. in the form

ßR=(t,1_t).

Alternatively we could write

pªRobin chooses Upº=ßRªUº=t,

pªRobin chooses Downº=ßRªDº=1_t.

Robin’s mixed-strategy space, i.e. the set of all possible mixed strategies for her, is

ÍR={(t,1_t):Ùt˙[0,1]}.

Note that we have already seen the graph of ÍR in Figure 3b.

Cleever has three pure strategies, therefore a mixed strategy for him belongs to the two-dimensional
unit simplex and takes the form

ßC=(p,q,1_p_q),

where
                                                

33 The notion of completely mixed strategies is used when discussing some equilibrium refinements, e.g. sequential equilibrium and
trembling-hand perfection. When all players choose completely mixed strategies, there is a positive probability of reaching any given
node in the game tree. Therefore no node is off the path. (These comments will make more sense after we encounter games in extensive
form.)
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pªCleever chooses leftº=ßCªlº=p,

pªCleever chooses middleº=ßCªmº=q,

pªCleever chooses rightº=ßCªrº=1_p_q.

His mixed-strategy space is:

ÍC={(p,q,1_p_q):Ùp,q≥0, p+q≤1}.

We have already seen the graph of ÍC in Figure 3c.

Payoffs to mixed-strategy profiles

We have noted that uiªsº is player i’s payoff when the players choose their parts of the pure-strategy
profile s˙S. Because the players are not randomizing their actions when they play s, the resultant payoff
vector is a certain, deterministic number. Now we ask the question: When the players execute the
mixed-strategy profile ß˙Í, what is the payoff to player i? Right away we see a problem even with the
way this question is phrased. It doesn’t make sense to ask ex ante what the payoff to player i is, because
her payoff depends on the precise pure strategies realized as the result of the individuals’
randomizations.

We could ask then: What is the distribution of payoffs player i would receive if the players executed
the mixed-strategy profile ß? Fortunately, we have no need for such a complicated answer. Because our
utility functions ui:ÙS§Â are assumed to be of the von Neumann–Morgenstern variety, we know that
each player’s preferences over distributions of von Neumann–Morgenstern utilities can be represented
by her expected utility. Now we need only ask: What is player i’s expected payoff given that the players
choose ß˙Í? We will simplify notation by using the same function name ui to represent the expected
utility to player i from a mixed-strategy profile ß˙Í as we used above for pure-strategy profiles. I.e. we
write uiªßº, where ui:ÙÍ§Â.34

The probability of a pure-strategy profile s

How do we calculate this expected utility for player i? We need to weight player i’s payoff to each
arbitrary pure-strategy profile s=¯si,s¥i˘i˙S by the probability that the profile s will be realized when
the players randomize according to the mixed-strategy profile ß˙Í. Because the players’
randomizations are independent of one another’s, the probability that s=(s1,…,sn) will occur is the

                                                

34 It is a formal convenience here to use the same function name for two different functions with distinct domains. Although this may
appear abusive prima facie, the more complete justification is the following: Let A, B, and C be sets such that AËB=õ. Let g:ÙA§C
and h:ÙB§C be functions. Then we can define f:Ù(A¨B)§C by

I.e. we can define ui:Ù(S¨Í)§Â. When the argument supplied to u i is an element of S  (respectively, Í), the function is evaluated using
the restriction of ui to S  (respectively, Í).
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product of the probabilities that each player j will play sj. The probability, according to ß , that j will
play sj˙Sj is ßjªsjº. Therefore the probability that s will occur when the players randomize according to
ß is the product of probabilities

pªs is playedº=pª(s1,…,sn) is playedº=pª1 plays s1ºÙæÙÚÙæÙpªn plays snº

=ß1ªs1ºÙæÙÚÙæÙßnªsnº= ßjªsjº∏
j=1

n

= ßjªsjº∏
j˙I

.

(16)

Expected payoff to a mixed-strategy profile ß

To complete our calculation of i’s expected utility when the mixed-strategy profile ß is played, we must
look at every possible pure-strategy profile s˙S, find i’s deterministic payoff for this pure-strategy
profile, and weight this payoff according to the profile’s probability of occurrence as given by (16). The
weighted sum over all these possible pure-strategy profiles is our desired expected payoff. I.e. the
expected payoff to player i when the players participate in the mixed-strategy profile ß is35

(17)

Payoff to i from ß is linear in any one player’s mixing probabilities

We can single out for special attention any player k˙I in our calculation of player i’s payoff to a mixed-
strategy profile ß˙Í and rewrite (17) as

(18)

where Åk˙I, ck:ÙSk˜Í¥k§Â is defined by

                                                

35 You may be more familiar with writing a summation (and similar remarks hold for products) in the form Ík=1
m xk,  i.e. with an integer

index k to indicate a particular element of a finite set of objects X={x1,…,xm} to be added. We will often find it more convenient—e.g.
when there is no natural indexing scheme—to write this summation as Íx˙XÙx.  This simply means to form a sum whose terms consist of
every element of X represented once. This is equivalent to the indexed formalism, for both summations and products, because both
(finite) addition and multiplication are commutative operations.
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(19)

Equations (18) and (19) say that player i’s expected payoff in the mixed-strategy profile ß is a linear
function of player k’s mixing probabilities {ßkªskº}sk˙Sk. (To see this note that, for each sk˙Sk, the
corresponding coefficient ckªsk,ß¥kº is independent of ßkªsk’º for all sk’˙Sk.) This observation will be
relevant when we determine a player’s best-response correspondence. (Note that this analysis includes
the case k=i.)

Player i’s payoff to a pure strategy si against a deleted mixed-strategy profile ß¥i

We will see that it will be very useful to determine player i’s payoff against a deleted mixed-strategy
profile ß¥i˙Í¥i when player i herself chooses some pure strategy si˙Si.

To represent the mixed-strategy profile ß˙Í induced by this combination, we again extend the
domain of the ¯æ,æ˘i function to include Si˜Í¥i so that we can make sense of the expression
“ß=¯si,ß¥i˘i.” We stipulate the restriction of ¯æ,æ˘i to Si˜Í¥i to be a function ¯æ,æ˘i:ÙSi˜Í¥i§Í
defined by ¯si,ß¥i˘i=¯∂iªsiº,ß¥i˘i.36,37 In other words, we replace the pure strategy si with the
degenerate mixed strategy ∂iªsiº which puts all of its weight on si.

We calculate the expected payoff to player i when she plays the pure strategy si’˙Si against the
deleted mixed-strategy profile ß¥i˙Í¥i using (18), (19), and (15), where we let k ¶ i  and let
ß=¯si’,ß¥i˘i; i.e. ßi=∂iªsi’º:

(20)

Note then that we have shown that Åsi˙Si, ciªsi,ß¥iº=uiª¯si,ß¥i˘iº. Therefore from (18), letting k¶i,
we can rewrite player i’s expected payoff to a mixed strategy ßi˙Íi against the deleted mixed-strategy
profile ß¥i˙Í¥i as:

                                                

36 Let f:ÙX§Z be a function and let YÓX be a subset of X. Then we can define a function f , the restriction of f to Y, as a function whose
domain is Y and which agrees with f for all points in Y. I.e. f:ÙY§Z and Åx˙Y, fªxº=fªxº.

37 To complete the definition of ¯æ,æ˘i we also extend its domain to include the set Íi˜S¥i, i.e. where player i chooses a mixed strategy
and the other players choose pure strategies. (This will be handy in our later analysis of strategic dominance.) We provide the obvious
definition for ¯æ,æ˘i:ÙÍi˜S¥i§ Í : ¯ai,(b1,…,bi¥1,biÁ1,…,bn)˘i = (∂1ªb1º,…,∂i¥1ªbi¥1º,ai,∂iÁ1ªbiÁ1º,…,∂nªbnº. Therefore now
¯æ,æ˘i:Ù[(Si¨Íi)˜(S¥i˜Í¥i)]§(S¨Í).
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uiª¯ßi,ß¥i˘iº= ciªsi,ß¥iºßiªsiº∑
si˙Si

, (21)

or, for more convenient future reference:

uiª¯ßi,ß¥i˘iº= ßiªsiºuiª¯si,ß¥i˘iº∑
si˙Si

= ßiªsiºuiª¯si,ß¥i˘iº∑
si˙supp ßi

. (22)

In other words a player’s payoff to a mixed strategy (against some fixed deleted mixed strategy profile)
is a convex combination of the payoffs to the pure strategies in the mixed strategy’s support (against that
deleted mixed strategy profile). (The set {ßiªsiº:Ùsi˙suppÙßi}  of coefficients is a set of convex
coefficients because they are nonnegative and sum to unity.)

Example (continued):

Let’s employ the very notational expression (17) to compute the payoff to Robin for an arbitrary mixed-
strategy profile ß=(ßR,ßC). Note that the summation Ís˙S of (17) generates six terms, viz. one for each
member of

S=SR˜SC={(U,l),(U,m),(U,r),(D,l),(D,m),(D,r)}.

For each of these terms the ∏jÙßjªsjº product multiplies two factors: ßRªsRº and ßCªsCº. For example,
when s=(D,l),

∏jÙßjªsjº=ßRªDºßCªlº=(1_t)p.

This product, then, is the weight attached to uRª(D,l)º=1 when we calculate Robin’s expected payoff
when the mixed-strategy profile ß is played.

We can use the game matrix from Figure 4 to easily compute the probability coefficients associated
with each pure-strategy profile. See Figure 5. This matrix of probability coefficients was formed by
multiplying the mixing probability of Robin’s associated with a cell’s row by the mixing probability of
Cleever’s associated with that cell’s column. Inspection of Figure 5 shows quickly what we had already
determined: that the probability coefficient corresponding to (D,l) is (1_t)p.

Figure 5: The probability coefficients which weight the pure-strategy profile payoffs in the
calculation of the expected payoff to an arbitrary mixed-strategy profile.

To compute Robin’s expected payoff to the mixed-strategy profile ß, then, we multiply her payoff in
each cell by the probability coefficient given in that cell of Figure 5, and then sum over all the cells. For
example, consider the mixed-strategy profile ß=(ßR,ßC) where Robin mixes between Up and Down
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according to ßR=(1/6,5/6) and Cleever mixes according to ßC=(9/10,0,1/10). You can easily verify that
Robin’s expected payoff for this mixed-strategy profile is

uRªßº=1
6

æ 9
10

æ2+5
6

æ 9
10

æ1+5
6

æ 1
10

æ9=9
5

.

The best-response correspondence

We have earlier considered player i’s problem of deciding on a best-response pure strategy siÆ˙Si to
some deleted pure-strategy profile [i.e. (n_1)-tuple] s¥i˙S¥i of pure-strategy choices by her opponents.
In her calculations for a fixed s¥i she was certain that player j˙I\{i} would play a particular sj˙Sj.

Now we ask: given that all other players but i are playing the deleted mixed-strategy profile ß¥i˙Í¥i,
what pure strategy is best for i? The answer to this question is i’s best-response correspondence
BRi:ÙÍ¥iéSi, which maps the space of deleted mixed-strategy profiles Í¥i into subsets of the space of
i’s pure strategies Si. (This definition of the best-response correspondence BRi is a generalization and
replacement of the earlier definition which considered only pure-strategies by the other players.)

Formally we write player i’s problem as finding, for every deleted mixed-strategy profile ß¥i˙Í¥i,
the set BRiªß¥iºÓSi of pure strategies for player i :

BRiªß¥iº= uiª¯si,ß¥i˘iºarg max
si˙Si

. (23)

Nonemptiness of BRiªß¥iº (i.e. the existence of a best-response pure strategy) is guaranteed for each
ß¥i˙Í¥i because Si is a nonempty and finite set.

Example (continued)

Let’s compute Cleever’s and Robin’s best-response correspondences to the other’s arbitrary mixed
strategy. Any mixed strategy Robin chooses can be described as a choice of t˙[0,1]. We first seek
Cleever’s best-response correspondence BRCªtº, which specifies all of Cleever’s pure strategies which
are best responses to Robin’s mixed strategy ßR=(t,1_t).

To determine this correspondence we compute Cleever’s payoffs to each of his three pure strategies
against Robin’s arbitrary mixed strategy t. Each pure-strategy choice by Cleever corresponds to a
column in Figure 4. We then look at the second element of each ordered pair in that column, because
that component corresponds to Cleever’s payoff, and weight each one by the probability that its row will
be chosen by Robin, viz. by t and (1_t) for Up and Down, respectively. This process yields:

uCªl;tº =8t+5(1_t) =5+3t,

uCªm;tº =7t+4(1_t) =4+3t,

uCªr;tº =3t+6(1_t) =6_3t.
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We plot Cleever’s three pure-strategy payoffs as functions of Robin’s mixed strategy t˙[0,1] in Figure
6.

Figure 6: Cleever’s pure-strategy payoffs as functions of Robin’s mixed strategy.

We first observe that Cleever’s payoff to left is strictly above his payoff to middle. (I.e. Åt˙[0,1],
uCªl;tº>uCªm;tº.) We will see later that this means that middle is strictly dominated by left. We also see
that, when t<1/6, right supplies Cleever with a higher payoff than either of the other strategies. When
t>1/6, left provides the highest payoff. When t=1/6, both left and right provide Cleever with a payoff of
5™. In the first two cases Cleever has a unique best response to Robin’s mixed strategy. In the last case
two of Cleever’s strategies are best responses.

To summarize we can write Cleever’s best-response correspondence as:

We can represent this best-response correspondence graphically by mapping the relevant intervals
describing Robin’s mixed strategy into pure-strategy choices by Cleever. (See Figure 7.)
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Figure 7: Cleever’s best-response correspondence for
three subsets of Robin’s mixed-strategy space.

The upper envelope of these three payoff functions is indicated by heavier line segments in Figure
6.38 This represents the expected payoff Cleever would receive, as a function of Robin’s mixed strategy
t, if Cleever played a best response to this mixed strategy.

Now we’ll determine Robin’s best-response correspondence as a function of Cleever’s mixed strategy
ßC. Because Cleever has three pure strategies to choose from, we need two parameters to describe his
arbitrary mixed strategy, viz. p and q. Analogously as we did above, we compute Robin’s expected
payoff to each of her two pure strategies as a function of Cleever’s mixed-strategy parameters:

uRªU;p,qº=2p+7q+0æ(1_p_q)=2p+7q,

uRªD;p,qº=1æp+7q+9(1_p_q)=9_8p_2q.

Robin should weakly prefer to play Up whenever

uRªU;p,qº≥uRªD;p,qº,

which occurs when

q≥1_10
9

Ùp.

The isosceles right triangle in Figure 8 represents Cleever’s mixed-strategy space in the following
sense: Every mixed strategy of Cleever’s can be represented by a (p,q) pair satisfying p,q≥0 and
p+q≤1. Therefore there is a one-to-one correspondence between ÍC and the points in that triangle.39

Also marked is the line segment of mixed strategies of Cleever’s at which Robin is indifferent between
playing Up and Down. On that line segment Robin’s best-response correspondence contains both pure
strategies. Points above that line segment represent Cleever mixed strategies against which Robin
strictly prefers to play Up; below that she strictly prefers to play Down. Robin’s best-response
correspondence can be written as

                                                

38 Let f1,…,fn be functions from some common domain X  into the reals, i.e. fi:ÙXÙ§ÙÂ. Then the upper envelope of these functions is
itself a function f:ÙXÙ§ÙÂ defined by: fªxºÙfiÙmax{f1ªxº,…,fnªxº}.

39 The isosceles triangle is just the projection of ÍC (=Ç2) onto the pq-axis. [In Figure 3(c) just drop each point on the shaded triangle
perpendicularly down onto the x1x2-axis to see where the isosceles triangle in Figure 8 comes from.]
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with the understanding that (p,q)˙Â
2
+  and p+q≤1.

Figure 8: Robin’s best-response correspondence for
three subsets of Cleever’s mixed-strategy space.

Best-response mixed strategies

Above we defined a player’s best pure-strategy response(s) to a given deleted profile of other players’
mixed strategies. (To be even more precise… we determined which of a player’s pure strategies were
best responses within her set of pure strategies.) But how do we know that a player’s best response is a
pure strategy? Could she do better by playing a mixed strategy? We will see that, given her opponents’
strategies, a player would never strictly prefer to play a mixed strategy over one of her pure-strategy
best responses.40 In fact the only time when—again, against a particular ß¥i˙Í¥i—a player would even
be willing to mix is when her best-response correspondence for that deleted strategy profile contains
more than one pure strategy; i.e. when #BRiªß¥iº>1. When that is true, she is willing to put positive

                                                

40 That doesn’t mean that mixed strategies aren’t useful. Even if a player is indifferent between playing a mixed strategy and a pure
strategy against some particular set of opponents’ strategies, playing a mixture has the effect of making her opponents uncertain about
what she will do. This can cause them to choose their strategies more beneficially for her.
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weight on any pure-strategy best response.

Formally… a player-i mixed strategy ßiÆ˙Íi is a best response for player i against the deleted mixed-
strategy profile ß¥i˙Í¥i if

ßiÆ˙ uiª¯ßi,ß¥i˘iºarg max
ßi˙Íi

. (24)

It might help slice through the notational fog if we index with k the possible pure strategies for i and
let m=#Si be the number of pure strategies for i. For every k˙{1,…,m}, let 1  si

k be i’s k-th pure
strategy, 2 pi

k be the probability of si
k according to the mixed strategy ßi˙Íi (i.e. pi

kfißiªsi
kº), and 3 ui

k

be the payoff to i against ß¥i when she plays her k-th pure strategy si
k; i.e. ui

kfiuiª¯si
k,ß¥i˘iº. Now we

can write the maximization problem for a player seeking an optimal mixed-strategy response as that of
choosing an m-vector pi=(pi

1,…,pi
m)˙Çm¥1 of probabilities which solves

pi
1ui

1+pi
2ui

2+Ú+pi
mui

mmax
pi˙Çm¥1

. (25)

Note, as we showed before in (18), that player i’s payoff is linear in her mixing probabilities pi
1,…,pi

m.
And as we showed in (22) player i’s payoff to her mixed strategy pi is a convex combination of her pure
strategy payoffs .

In the above optimization problem player i must assign probabilities to her different pure-strategy
choices in such a way as to maximize the probability-weighted sum of her payoffs from those pure
strategies. In this type of problem probability is a scarce resource: the more of it one pure strategy gets,
the less another receives. Therefore you want to put your probability where it counts the most.

Consider the case in which one pure strategy si
k is strictly better than any of the other pure strategies;

i.e. ui
k is strictly larger than all of the other pure-strategy payoffs. Then the pure strategy si

k should
receive all of the probability; i.e. pi

k should be unity and all of the other probabilities should be zero.
(Otherwise the objective function could be increased by shifting probability away from a pure strategy
whose payoff is lower.) This would correspond to playing the pure strategy si

k.

Now consider the case in which several pure strategies are best. E.g. si
k and si

r, k≠r, both result in the
payoff uiÙfiÙui

k=ui
r which is strictly larger than all of the other pure-strategy payoffs. We should

definitely not waste probability on any of these other, low-performance pure strategies, because we
could increase our expected payoff by shifting that probability to either of these best pure strategies.
However, we are indifferent to how much of our probability we assign to the various best pure
strategies. E.g., because si

k and si
r both result in the payoff ui, it does not matter whether we put all of the

probability on si
k, put all of the probability on si

r, or split the probability by putting å˙[0,1] on si
k and

(1_å) on si
r. [In this third case, our expected payoff is still åui

k+Ù(1_å)ui
r=åuiÙ+Ù(1_å)ui=ui.] In

this last case we see that the best-response mixed-strategy correspondence for this deleted mixed-
strategy profile contains a continuum of mixed strategies corresponding to all the possible mixtures over
the best pure strategies.
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So we see that any mixed strategy which allocates probability only to best-response pure strategies is
a best-response mixed strategy and vice versa.41 We can express this conclusion in the following
theorem:

The player-i mixed strategy ßiÆ˙Íi is a best-response for player i to the
deleted mixed-strategy profile ß¥i˙Í¥i if and only if

suppÙßiÆÓBR iªß¥iº. (26)

To prove P⁄Q (i.e. “P if and only if Q”), where P and Q are propositions, we must
prove both A PflQ (i.e. “P only if Q”) and B QflP (i.e. “P if Q”).42

A: (ßiÆ is a best response to ß¥i)fl suppÙßiÆÓBR iªß¥iº.

The conditional proposition PflQ is equivalent to êQflêP.43 Therefore to prove A we assume
that suppÙßiÆÙÀÙBR iªß¥iº and try to deduce that ßiÆ  is not a best response to ß¥i. The fact that
suppÙßiÆÙÀÙBR iªß¥iº  implies that ‰si’˙Si\BRiªß¥iº such that ßiÆªsi’º>0. We show that ßiÆ is not a best
response to ß¥i by exhibiting a mixed strategy ßià˙Íi such that uiª¯ßià,ß¥i˘iº>uiª¯ßiÆ,ß¥i˘iº. To
construct the better mixed strategy ß ià, we arbitrarily pick some best-response pure strategy
si˙BRiªß¥iº on which to shift all the probability which the original mixed strategy ßiÆ bestowed upon
the non–best-response strategy si’. Formally… define ßià:ÙSi§[0,1] for all si˙Si by

I leave it as an exercise for you to show that indeed uiª¯ßià,ß¥i˘iº>uiª¯ßi,ß¥i˘iº.

B: suppÙßiÆÓBR iªß¥iº fl (ßiÆ is a best response to ß¥i).

We first observe that every player-i pure-strategy best response yields player i the same expected
utility; i.e. Åsi’,si“˙BRiªß¥iº, uiª¯si’,ß¥i˘iº=uiª¯si”,ß¥i˘iº.44 Denote by ui˙Â, this common expected
utility; i.e. Åsi˙BRiªß¥iº, uiª¯si,ß¥i˘iº=ui.

Now we show that ui is an upper bound on the utility which any mixed strategy can achieve. To see
this we refer to (22) which shows that the payoff to player i from any mixed strategy ßi˙Íi against ß¥i
is a convex combination of the payoffs to the pure strategies in the support of ßi. A convex combination

                                                

41 We have already argued that a best-response pure-strategy exists. The degenerate mixed strategy which puts unit weight on any such
pure-strategy best response exists and is a mixed-strategy best response. Therefore a mixed-strategy best response exists.

42 A proposition  is a statement which is either true or false.
43 For any proposition P, we denote by êP the negation of P. êP is also a proposition. Its truth value is the opposite of the truth value of

P.
44 If one yielded a strictly higher expected utility, the other would not be a best response.

Theorem

Sketch of Proof
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of a set of real numbers must be weakly less than the maximum of that set.45 Therefore any mixed
strategy ßi must yield an expected utility such that uiª¯ßi,ß¥i˘iº≤ui.

Any mixed strategy which yields an expected utility of ui must be a best response. (If it were not,
there would exist another mixed strategy which yielded a higher utility, but this would contradict that ui
is an upper bound.)

Now use suppÙßiÆÓBR iªß¥iº and (22), to show that uiª¯ßiÆ,ß¥i˘iº=ui. Therefore ßiÆ is a best-
response mixed strategy. ó46

The expected payoff to i from playing such a best-response mixed strategy is exactly the expected
payoff she would receive from playing any one of her best pure strategies. Therefore a player never
strictly prefers to mix rather than to play one of her best pure strategies against a particular profile of
opponents’ strategies.

For a given deleted profile of opponents’ mixed strategies ß¥i˙Í¥i, we now know which mixed
strategies are best responses given the pure-strategy best-responses BRiªß¥iº. This gives us an
alternative and often useful way to graphically represent the players’ best-responses, viz. in terms of the
mixing probabilities which are optimal given the opponents’ mixed strategies.

We can now define player i’s mixed-strategy best-response correspondence MBRi:ÙÍ¥iéÍi, which
specifies, for any deleted mixed-strategy profile ß¥i˙Í¥i by i’s opponents, a set MBRiªß¥iºÓÍi of
player-i mixed strategies which are best responses to ß¥i. This definition follows directly from (26):

MBRiªß¥iº={ßi˙Íi:ÙsuppÙßiÓBR iªß¥iº}. (27)

Example:

We previously determined Robin’s and Cleever’s (pure-strategy) best-response correspondences BRR
and BRC. We can use each player’s pure-strategy best-response correspondence to express the
corresponding mixed-strategy best response correspondence, viz. MBRR and MBRC, respectively.

Every mixed-strategy for Robin can be written as an element of the one-dimensional simplex
{(t,1_t):Ùt˙[0,1]}, where we adopt the convention that the mixed strategy (t,1_t) corresponds to
playing Up with probability t. Robin’s mixed-strategy best-response correspondence is:

                                                

45 More formally, you can show the following: For some integer n, let {x1,…,xn} and {å1,…,ån} be sets of real numbers such that
(å1,…,ån)˙Çn¥1; i.e. the {åj} are convex coefficients. Then å1x1+Ú+ånxn≤maxÙ{x1,…,xn}.

46 This smiley-face symbol indicates the end of the proof, as in Aumann and Sorin [1989]Aumann and Sorin [1989: 14] .
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with the understanding that (p,q)˙Â
2
+  and p+q≤1.

Every mixed strategy for Cleever can be written as an ordered triple belonging to the two-dimensional
simplex {(p,q,1_p_q):Ùp,q≥0,p+q≤1}, where we adopt the convention that the mixed strategy
(p,q,1_p_q) corresponds to playing left and middle with probabilities p and q, respectively. Cleever’s
mixed-strategy best-response correspondence is:

Example:

Consider the two-player game of Figure 9. Each player has two pure strategies, so each player’s mixed
strategy can be described by a single number on the unit interval. I’ll assign p and q to Row for Up and
to Column for left, respectively.

Figure 9: A simple two-player game.

We first compute Row’s mixed-strategy best-response correspondence pÆ:Ù[0,1]é[0,1], where
pÆªqº returns the set of all optimal mixing probabilities of playing Up for a given probability q with
which Column plays left. To do this we compute Row’s expected payoff to each of her pure strategies as
a function of Column’s mixed strategy q:

uRªU;qº=2q_(1_q)=3q_1,

uRªD;qº=¥3q.

Comparing these two pure-strategy payoffs, we see that Row strictly prefers Up when q >1/6, is
indifferent between Up and Down when q=1/6, and strictly prefers Down when q<1/6. Row’s pure-
strategy best-response correspondence is
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We can therefore write Row’s mixed-strategy best-response correspondence as

The graph of this correspondence appears as the solid heavy line in Figure 10.

We similarly compute Column’s mixed-strategy best-response correspondence qÆªpº, which returns
the probabilities of choosing left which are optimal given the probability p with which Row chooses Up.
Computing Column’s pure-strategy expected payoffs against Row’s mixed-strategy p we obtain

uCªl;pº=¥p+2(1_p)=2_3p,

uCªr;pº=2p_(1_p)=¥1+3p.

Column strictly prefers left if p<™, is indifferent between left and right if p=™, and strictly prefers right
if p>™. Column’s pure-strategy best-response correspondence is

We can write Column’s mixed-strategy best-response correspondence as

The graph of this correspondence appears as the heavy shaded line in Figure 10.

A foreshadowing: We will see later that the intersection of the graphs of these correspondences is the
Nash equilibrium of the game.
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Figure 10: The mixed-strategy best-response correspondences for the game in Figure 9.

Summary

A strategic-form game is determined by a set of players, a pure-strategy space for each player, and a
von Neumann-Morgenstern utility function for each player, the arguments of which are the pure
strategies chosen by all the players. Such games can be conveniently represented by a matrix which
includes a side for each player and whose cells contain payoff vectors.

Rational players choose actions which maximize their expected utility given their beliefs about the
actions of their opponents. We set out to solve the Easy Part of Game Theory, viz. the problem of what
choice a rational player would make given her beliefs about the choices of her opponents. We saw how
to determine each player’s pure-strategy best response(s) to the pure-strategy choices of her opponents.

We then expanded the set of choices available to the players by introducing mixed strategies, which
are probability distributions over pure strategies. We saw that mixed strategies are members of a unit
simplex and that pure strategies are degenerate mixed strategies. We computed players’ expected
payoffs to arbitrary mixed-strategy profiles by weighting the payoffs to pure-strategy profiles by the
probability that each pure-strategy profile would be realized by the players’ independent
randomizations.

We determined each player’s pure-strategy best response(s) against arbitrary mixed strategies by the
opponent. We saw that, for a given deleted profile of other players’ strategies, a nondegenerate mixed
strategy can be a best response only when there are at least two pure-strategy best responses and that a



Strategic-Form Games Page 27

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

mixed strategy is a best response if and only if it puts positive probability only upon best-response pure
strategies. We then saw how the pure-strategy best-response correspondences yield the mixed-strategy
best-response correspondences.
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