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Introduction

We return to the terrain of strategic-form (aka normal-form) games and ask: what predictions can we
make about a game’s outcome if we only assume that the players are rational? (To be definite… at this
point we are not making assumptions about what the players believe about the other players’ rationality
or believe about the strategic choices the other players will make.) We typically won’t be able to make a
unique prediction; instead we’ll usually find a multiplicity of outcomes which are consistent with the
rationality of all the players. In fact, with this relatively weak assumption we often will be unable to
refine the set of possible outcomes at all.1 (In a later handout we’ll ask the question: what predictions
can we make about a game’s outcome if we also assume that this rationality is “common knowledge?”2

This will often yield more precise predictions than merely assuming that all players are rational.)

To begin our analysis we discuss the concept of strategic dominance. Then we will turn to the more
precisely relevant concept of “never a best response.” These notions will be the foundation for our study
of nonequilibrium solution concepts. These concepts are nonequilibrium in the sense that they typically
admit outcomes which are not Nash equilibria.3 (Each player will be playing a best response to her

                                                

Ù © 1997 by Jim Ratliff, <jim@virtualperfection.com>, <http://virtualperfection.com/gametheory>.
1 To refine a set of outcomes is to remove some outcomes from further consideration through the application of some acceptability

criterion.
2 A loose definition of common knowledge will suffice for now: A fact is common knowledge if each player knows it, knows that all

other players know it, knows that all other players know that all other players know it, ad infinitum.
3 Of course, we haven’t encountered Nash equilibrium in this course yet. Many of you are nevertheless familiar with that concept and it is

for those folk I include this comment.
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beliefs about what strategies the other players choose. However, her beliefs may be false.) These
nonequilibrium techniques are of interest for the following reason: If we can make a useful prediction
using only nonequilibrium analysis, our conclusion can be much more compelling than if we had
achieved the same result using the much stronger (and frequently more dubious) assumptions required
by equilibrium analysis. Furthermore, by applying nonequilibrium techniques in our initial analysis of a
game we will frequently greatly simplify our subsequent equilibrium analysis.

A strategy for a player is dominated if there exists another strategy for her which is better for her no
matter what choices the opponents make. A rational player would never play a dominated strategy. We
define what it means for a pure strategy to be dominated by another pure strategy, for a pure strategy to
be dominated by a mixed strategy, and then for a mixed strategy to be dominated by a pure or mixed
strategy.

Because a rational player would never play a dominated strategy, we can sometimes use a dominance
analysis to rule out some outcomes as possibilities when the game is played by rational players. In some
games a dominance analysis leads to a unique prediction of the outcome when players are rational; we
say that these games are dominance solvable. In other games a dominance analysis results in no
refinement of the set of possible outcomes. Other games lie between these two extremes: dominance
analysis rejects some outcomes as impossible when the game is played by rational players but still
leaves a multiplicity of outcomes.

Although we have established that a rational player would never play a dominated strategy, we have
not established that any undominated strategy could be plausibly chosen by a rational player. I.e. we
have not shown that a dominance analysis fully exhausts the implications of all players being rational.

Closely related to the concept of a strategy being dominated for a player is the idea that this strategy
is “never a best response” for that player: No matter what beliefs she has about the actions of her
opponents, she could not rationally choose to play that strategy. If a strategy is dominated, it can never
be a best response. However, it is not obvious that the implication holds in the reverse direction. I.e. it’s
not obvious that a strategy which is never a best response is also a dominated strategy. Therefore the set
of strategies which are never best responses is weakly larger than the set of dominated strategies. An
analysis based on whether strategies are possibly best responses does exhaust the implications of all
players being rational: A strategy cannot be plausibly chosen by a rational player if and only if it is
never a best response.

We will see—perhaps surprisingly—that in two-player games a strategy is never a best response if
and only if it is dominated. For two-player games, then, a dominance analysis fully exploits the
assumption that all players are rational. However, for games with three or more players, it is possible
that an undominated strategy will yet never be a best response. Therefore we can sometimes rule out as a
plausible choice a strategy even when it is undominated. For more-than-two-player games, then, a
dominance argument need not fully exploit the assumption that all players are rational.
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Recapitulation

Let’s review the standard paradigm and notation. We have a finite set I of n players, I={1,…,n}. The
i-th player has a nonempty finite set of pure strategies—her pure-strategy space Si—available to her,
from which she can choose one strategy si˙Si. In general her choice of pure strategy will be
probabilistically determined by a mixed strategy ßi˙ÇªSiºfiÍi, which is a probability distribution over
her pure-strategy space Si; the probability that she chooses a particular pure strategy si˙Si is specified by
ßiªsiº.

The players simultaneously choose their strategies. If they choose pure strategies, the resulting pure-
strategy profile is some ordered n-tuple s=(s1,…,sn), where s˙S=Xi˙IÙSi. S is called the space of pure-
strategy profiles. If they choose mixed strategies, the resulting mixed-strategy profile is some ordered n-
tuple ß=(ß1,…,ßn), where ß˙ÍfiXi˙IÙÍi. Í is called the space of mixed-strategy profiles.

When we want to focus on the strategy choices of all players except i, we write player i’s deleted
strategy profile s¥i=(s1,…,si¥1,siÁ1,…,sn) for the pure-strategy case or ß¥i=(ß1,…,ßi¥1,ßiÁ1,…,ßn)
for the mixed-strategy case. We denote the space of player i’s deleted pure- and mixed-strategy profiles
by S¥i and Í¥i, respectively. We write ¯ai,b¥i˘i to indicate the strategy profile resulting when player i
chooses strategy ai˙(Si¨Íi) and her opponents choose the deleted strategy profile b¥i˙(S¥i¨Í¥i).

After all the players simultaneously pick their individual strategies, a pure-strategy profile s˙S is
realized.4 Each player i receives an ex post payoff which depends on this s, viz. uiªsº.

The expected (ex ante) payoff to player i when the players all participate in the mixed-strategy profile
ß˙Í is

(1)

As a special case of (1) you can show that player i’s expected payoff when she plays the pure strategy
si˙Si against the deleted mixed-strategy profile ß¥i˙Í¥i is

(2)

When player i believes that her n_1 opponents are playing the deleted mixed-strategy profile
ß¥i˙Í¥i, the pure strategies which are best responses for i are given by i’s best-response correspondence
BRi:ÙÍ¥iéSi,5

                                                

4 If all the players choose pure strategies, the realized pure-strategy profile s  is simply the strategy profile the players choose. More
generally, the players choose mixed strategies. Each player’s mixed strategy results in a pure-strategy realization for her. The collection
of these pure-strategy realizations is a realization of a pure-strategy profile.
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BRiªß¥iº= uiª¯si,ß¥i˘iºarg max
si˙Si

, (3)

which maps the space of deleted mixed-strategy profiles Í¥i into subsets of the space of i’s pure
strategies Si; i.e. BRi:ÙÍ¥iéSi.

Fix some deleted mixed-strategy profile ß¥i˙Í¥i by i’s opponents. When player i has a unique pure-
strategy best response—i.e. when BRiªß¥iº is a singleton (alternatively, when #BRiªß¥iº=1)—she has
no choice but to play that pure strategy. However, if there are two or more pure-strategy best responses,
she can randomize over those pure-strategy best responses in any fashion, and she cannot put positive
weight on any pure strategy which is not a best response. In other words, a mixed strategy ßi˙Íi is a
best response for i against the deleted mixed-strategy profile ß¥i˙Í¥i if and only if it puts positive
weight only on pure-strategy best responses; i.e. if and only if its support is contained in the best-
response set:6

suppÙßiÓBR iªß¥iº. (4)

Strong dominance

Often a player’s optimal strategy depends crucially on what she believes her opponents are doing.
However, this is not always the case. We say that a strategy is strongly (or strictly) dominant for a player
if it is strictly better than all of her other choices regardless of the actions of her opponents. When a
rational player—someone who chooses her action so as to maximize her expected utility given her
beliefs—has a dominant strategy, we can be quite confident in predicting that she would choose that
dominant strategy. If every player had a dominant strategy, predicting the outcome of the game would
be a trivial exercise: The predicted outcome would be the strategy profile in which each player chose her
strongly dominant strategy. Fortunately or unfortunately, it is rarely the case that a player has a
dominant strategy; however, notions of strategic dominance often remain useful. (In what follows, if I
leave out the qualifier “strongly” or “strictly,” interpret the statement as if the qualifier were explicit.)

First we will focus on when a pure strategy might be dominated. We will discuss what it means for
one pure strategy for player i to dominate another of her pure strategies. We will see that we can assess
dominance even if we restrict attention only to the opponents’ pure strategies. After that we will see that
sometimes a mixed strategy can dominate a pure strategy even though no pure strategy did. Lastly, we
will how a mixed strategy can be dominated by another pure or mixed strategy.7

                                                                                                                                                                        

5 Recall that a correspondence yields a set for each value of its argument. “argÙmax” refers to the set of values of the argument which
maximizes the maximand.

6 Recall that the support of a mixed strategy is the set of pure strategies to which it allocates positive probability; i.e.
suppÙßi={si˙Si:Ùßiªsiº>0}.

7 A good reference concerning strong domination is Fudenberg and Tirole [1991].
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Pure-strategy strong dominance

Consider two pure strategies for player i: si,si’˙Si. We say that si’ strictly dominates si if si’ gives player
i a strictly higher expected utility than does si for every possible deleted pure-strategy profile s¥i˙S¥i
which her opponents could play, i.e. if

Ås¥i˙S¥i,!uiª¯si’,s¥i˘iº>uiª¯si,s¥i˘iº. (5)

If si’ strictly dominates si, a rational player would never choose si (if she believes her opponents will all
choose pure strategies) because, regardless of her beliefs concerning her opponents’ strategies s¥i, she
could increase her expected utility by choosing si’ instead.

If there exists a strategy si’˙Si which strictly dominates si˙Si for player i, then we say that si is
strictly dominated for player i. If there does not exist a pure strategy which dominates si, then we say
that si is undominated (by pure strategies) for player i. If there exists an si’˙Si which dominates every
other strategy si˙Si\{si’},8 then we say that si’ is a strictly dominant strategy for player i. (We will see
that a strategy can be dominated even if there does not exist a dominant strategy.) If a rational player has
a dominant strategy, she must choose that strategy (if she believes that her opponents are all choosing
pure strategies). (We will soon remove this “opponents are all choosing pure strategies” qualification.)

Note from (5) that in assessing whether one of her strategies is dominated, dominant, or undominated
a player only needs to know her own payoff function ui:ÙS§Â—i.e. how her payoff depends on the
choices of all the players; she does not need to know anything about her opponents’ payoffs or even that
her opponents are rational.

Example: Analyzing pure-strategy dominance.

Pure-strategy domination is easy to analyze just by inspection of the payoff matrix. Consider Row’s
payoffs in the game in Figure 1.9 We observe that c dominates b for Row, because 3>1, 4>3, and
0>¥1. Similarly, a dominates b. So, for either reason, b is a dominated strategy. However, neither a nor
c dominates each other. (Against d, c is better than a, but against e, a is better than c.) Therefore a and c
are both undominated by pure strategies. Further, Row doesn’t have a dominant strategy, because she
doesn’t have a single strategy which dominates both of the remaining strategies. (A necessary, but not
sufficient, condition for Row to have a dominant strategy is that every Row payoff in exactly one row
appear in boldface. A sufficient condition is that no Row payoffs in any other row appears in boldface.)

                                                

8 Let A and B be sets. The difference (or relative complement) of A and B, denoted A\B, is the set of elements which are in A but not in B,
i.e. A\B={x˙A:ÙxâB}. The difference of A and B is also sometimes written as A_B.

9 Row payoffs which are maximal within their columns and Column payoffs which are maximal within their row appear in boldface.
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Figure 1: Column has a dominant strategy; Row does not.

Now consider Column’s payoffs. Strategy e dominates d, because 2>1, 3>0, and 8>7. Similarly e
dominates f. As a consequence both d and f are dominated strategies, and e is a dominant strategy for
Column because it dominates all of his other strategies. (Note that every Column payoff in column e
appears in boldface and that no other Column payoff appears in boldface.)

Restricting attention to opponents’ pure strategies

Look again at the definition of (5). If si’˙Si strictly dominates si˙Si in this sense, we are sure that si’
will outperform si for player i as long as her opponents are choosing pure strategies (because the
universal quantifier says for all s¥i˙S¥i). But what if the opponents are playing mixed strategies? Can
she still be sure that si’ is a better choice than si? In general we want to allow for players choosing mixed
strategies. It seems we would actually want the definition of (5) to be that si’ strictly dominates si if the
inequality holds for all possible mixed strategies by her opponents, i.e. if

Åß¥i˙Í¥i,!uiª¯si’,ß¥i˘iº>uiª¯si,ß¥i˘iº. (6)

Prima facie, the definition in (6) looks more difficult to satisfy than (5) because the inequality must hold
in a larger set of cases. However, the two definitions are actually equivalent and the version in (5) is
easier to verify because we only need to check a finite number of deleted pure-strategy profiles rather
than all possible deleted mixed-strategy profiles. The two definitions are equivalent in the sense that, if
si’ strictly dominates si according to (5), then si’ also strictly dominates si according to (6), and vice
versa. Let’s see why this is so. Clearly, satisfaction of the inequality in (6) implies satisfaction in (5)
because the set of deleted pure-strategy profiles S¥i is included in the set of deleted mixed-strategy
profiles Í¥i.10

The other direction—that satisfaction of the inequality against all deleted pure-strategy profiles by the
opponents implies satisfaction against all possible deleted mixed-strategy profiles—requires a little work
to see. The idea is that player i’s payoff to any pure strategy against a particular combination of mixed
strategies by her opponents is a convex combination of her payoffs against deleted pure-strategy profiles
by her opponents, where the coefficients of that convex combination depend only on her opponents’
strategies. By playing the better (against pure strategies) pure strategy she will receive a higher convex
combination than she would have by playing the inferior (against pure strategies) pure strategy.
                                                

10 This wording is so abusive as to be untrue. However it is so convenient an abuse that I (and the rest of the game theory community)
permit it to stand. It is not true that S ¥iÓÍ¥i. The following, however, is true: For every s¥i˙S¥i, form the deleted mixed-strategy
profile ß¥i=(∂1ªs1º,…,∂i¥1ªsi¥1º,∂iÁ1ªsiÁ1º,…,∂nªsnº)˙Í¥i. Then s¥i and ß¥i are equivalent in the sense that, for all ßi˙Íi,
uiª¯ßi,s¥i˘iº=uiª¯ßi,ß¥i˘iº.
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In order to make this argument clearer consider an arbitrary deleted mixed-strategy profile ß¥i˙Í¥i.
We can use (2) to express uiª¯si’,ß¥i˘iº as a convex combination of uiª¯si’,s¥i˘iº terms, one for each
s¥i˙S¥i. Now assume that si’ strictly dominates si in the sense of (5). Then we replace each uiª¯si’,s¥i˘iº
term by something we know from (5) to be smaller, viz. uiª¯si,s¥i˘iº. The result is equal to uiª¯si,ß¥i˘iº,
and we thereby establish the inequality (6) for an arbitrary ß¥i and therefore for all ß¥i˙Í¥i. In other
Ùwords symbols,

(7)

Therefore if si’ strictly dominates si in the sense of (5), then it does in the sense of (6) as well.

Earlier I said that, if a rational player believed that all of her opponents were choosing pure strategies,
she would never play a dominated strategy, as defined by (5), and she would choose her dominant
strategy if she had one. Now that we have seen that we can without loss of generality restrict our
attention to opponents’ pure strategies when assessing questions of dominance, we can dispense with
this qualification that the player believes that all of her opponents are choosing pure strategies: We can
categorically say that a rational player would never play a dominated strategy [as defined in (5)] and that
she would choose her dominant strategy if she had one.

When all players have dominant strategies

Consider the case in which each player i˙I 1 is rational, 2 knows her own payoffs ui:ÙS§Â, and 3 has a
dominant strategy siÆ. Then each player must choose her dominant strategy siÆ, and the result of the
game must be the strategy profile (s1Æ,…,snÆ). We say that such a game is dominance solvable.11

Example: The Prisoners’ Dilemma is dominance solvable.

Consider the Prisoners’ Dilemma game of Figure 2.12 Each prisoner can either Fink or stay Mum. If
they both stay Mum they are released for lack of evidence and get to keep their loot. Any prisoner who
Finks is rewarded for squealing; he is also set free unless his partner also squeals. Any prisoner who is
squealed upon is given a prison sentence. The reward to squealing does not compensate for the suffering
of prison life. So if they both stay Mum, each is better off than if they both Finked. However, if one
player stays Mum, the other gains by being the sole Fink.

Figure 2: A Prisoners’ Dilemma

                                                

11 We will also apply this term later with regard to the iterated elimination of strictly dominated strategies.
12 The earliest written description of the Prisoners’ Dilemma appears in Tucker [1950], which is reprinted in Straffin [1980].
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Consider the Row suspect. Finking is better if Column stays Mum, because Row not only goes free
(as she would if she stayed Mum too) but also pockets the reward for testifying. Finking is better if
Column Finks, because jail is a foregone conclusion so Row might as well benefit from the fruits of
testifying. So we see that, regardless of Column’s action, Finking is a strictly better choice for Row.
Therefore Finking is a dominant strategy for Row. Exactly the same analysis applies to Column’s
choice. Because each player has the dominant strategy Fink, the only outcome for the game with rational
prisoners is (Fink, Fink).

Note that this analysis only requires that each player is rational and knows the deal he is offered by
the authorities (i.e. his own payoffs). A prisoner does not need to know what deal the other prisoner is
promised and does not even need to know that the other prisoner is rational.

However, game theory is not typically this easy. (Games where all players have dominant strategies
are uninteresting game theoretically.) Consider the matching pennies game of Figure 3. Each player
decides which side of a coin to show. Row prefers that the coins match; Column prefers that they be
opposite. Here a player’s best choice depends crucially on the choice of her opponent. (E.g. Column
gains by playing T if Row plays H, but Column gains by playing H if Row plays T.) No strategy is
dominant for either player.

Figure 3: Neither player has a dominant strategy in matching pennies.

Mixed-strategy dominance

We can use the above definition of pure-strategy dominance to rule out of consideration any pure
strategy si which is dominated by some other pure strategy si’. Can we do more? In other words are there
cases in which a pure strategy is dominated by some mixed strategy ßi’˙Íi of player i’s but is not
dominated by any pure strategy? The answer is yes.

So we define a more general notion of domination. Consider a pure strategy si˙Si and a mixed
strategy ßi’˙Íi for player i. We say that ßi’ strictly dominates si if ßi’ gives player i a strictly higher
expected utility than does si for every possible pure-strategy profile s¥i which her opponents could play,
i.e. if

Ås¥i˙S¥i,!uiª¯ßi’,s¥i˘iº>uiª¯si,s¥i˘iº. (8)

We use the obvious terminology, parallel to that we defined above in connection with pure-strategy
dominance, concerning when a strategy is dominated, undominated, and dominant. (Exactly the same
argument we used with respect to pure-strategy domination above works here to justify our restriction of
attention to deleted pure-strategy profiles by the opponents.)
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It’s probably not obvious to you that allowing mixed strategies could increase the set of pure
strategies which are dominated and therefore irrational. I.e. how do we know that it’s not the case that
any pure strategy si which is dominated by a mixed strategy ßi’ wouldn’t be dominated more simply by
some pure strategy si’? Let’s look at a simple game to provide an example.

Example: A mixed strategy can dominate where no pure strategy can.

Consider the game in Figure 4. It’s easy to verify that none of Row’s pure strategies dominate each
other. In particular neither Up nor Middle dominates Down. Even though Up is better than Down when
Column plays left, Down is better than Up when Column plays right. Similar remarks can be made
about the relationship between Middle and Down.

Figure 4: A mixed strategy can dominate where no pure strategy can.

However, consider the mixed strategy for Row in which she plays Up one-half the time and Middle
the remainder, i.e. ßR’=™œUÙ⊕Ù™œM. We will see that, even though neither Up nor Middle dominates
Down, this mixture of Up and Middle does dominate Down. Let’s compute Row’s expected utility from
this mixed strategy against both of Column’s pure-strategy choices, left and right:

uRªßR’;Ùlº=™(6)+™(0)=3>2=uRªD;Ùlº, (9)

uRªßR’;Ùrº=™(0)+™(6)=3>2=uRªD;Ùrº. (10)

So we see that this mixture strictly outperforms Down regardless of which strategy Column chooses;
therefore ßi’ dominates Down even though Down was undominated by pure strategies alone.

How did I know to choose the (™,™) mixing probabilities as I did? Let’s write a mixture between Up
and Middle more generally as

ßR’=pœUÙ⊕Ù(1_p)œM, (11)

where p˙[0,1]. We want to choose p such that Row’s payoff to the mixed strategy exceeds her payoff
to the pure strategy Down both when Column chooses left and when he chooses right. I.e. we want p to
satisfy the two inequalities13

uRªßR’;Ùlº=6p+0æ(1_p)>uRªD;Ùlº=2, (12)

uRªßR’;Ùrº=0æp+6(1_p)>uRªD;Ùrº=2. (13)
                                                

13 You can see how using the definition of dominance which only requires comparisons against a finite number of opponents’ pure-
strategy choices simplifies life tremendously!
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Inequality (12) if satisfied whenever p>£; inequality (13) is satisfied whenever p<‹. Therefore the
mixture between Up and Middle ßR’ will dominate Down as long as we choose

p˙(£,‹). (14)

My choice of p=™ was just one of many I could have made.

The intuition for the successful domination of Down by a mixture of Up and Middle can be more
clearly explained when we consider Column’s choice between left and right as a mixed strategy,
ßC=qœlÙ⊕Ù(1_q)œr. In Figure 5 we plot Row’s expected payoff to Up, Middle, Down, and to the (™,™)
mixture of Up and Middle, all as a function of Column’s mixing parameter q. It is easy to calculate that

uRªU;Ùqº=6q+0æ(1_q)=6q, (15)

uRªM;Ùqº=0æq+6(1_q)=6_6q. (16)

Figure 5: Row’s pure- and mixed-strategy payoffs as a function of Column’s mixed strategy.

Now we can ask the question: why was the mixture successful at dominating Down when neither Up
nor Middle was successful on its own? We can see that Up is very good for Row against high q, i.e.
when Column puts a lot of weight on left; but Up is very bad against low q. Conversely, Middle is bad
against high q but good against low q. So we see that Up and Middle are complementary: one’s regime
of strength is the other’s regime of weakness. By mixing between these two highly variable performers,
we obtain a mixed strategy which is uniformly mediocre. In this example uniformity was a virtue when
finding dominating strategies—it doesn’t matter how good a strategy is at its best if it is too bad at its
worst. Mediocrity is tolerable as long as it is good enough. Even if Row’s payoffs to Down were
somewhat higher, we would still have been able to find a dominating mixture. You should be able to
show that this would be possible as long as Row’s common payoff to Down were less than 3.
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Dominated mixed strategies

Let’s summarize our discussion of strict dominance so far. First we defined what it meant for one pure
strategy to dominate another pure strategy. We justified restricting attention to pure strategies of the
opponents when assessing the performance of a conjectured dominating strategy. We then defined strict
dominance of a pure strategy by a mixed strategy. We saw that a pure strategy could be dominated by a
mixed strategy even if it is not dominated by any pure strategy.

Note that thus far we have only discussed what it meant for a pure strategy to be dominated. But that
raises a further question: If we know what pure strategies are dominated and therefore not rationally
chosen, what can we say about the mixed strategies which are dominated and therefore not rationally
chosen by a rational player?

Part of the answer is simple: Any mixed strategy which puts positive probability on a dominated
strategy is itself dominated. I leave it as an exercise to generalize (6) in the natural way in order to
define what if would mean for a mixed strategy to be strictly dominated (by another mixed strategy).
Then show that, if some mixed strategy ßi has a dominated pure strategy in its support, you could
construct another mixed strategy ßi’ which strictly dominates ßi.

However, this does not mean that any mixed strategy which puts positive probability only upon
undominated pure strategies is necessarily undominated itself. We saw above that a pure strategy could
be dominated by a mixed strategy even though it was undominated by any pure strategy. Very similarly,
a nondegenerate mixed strategy ßi can be dominated by another mixed strategy ßi’ (even by a pure
strategy) even though ßi puts no weight on dominated pure strategies.

Example: A mixed strategy over undominated pure strategies can be dominated.

To see that a mixed strategy can be dominated even when it puts no weight on dominated pure strategies
we can modify the game in Figure 4 slightly, by changing Row’s payoff to Down from 2§4. See
Figure 6.

6,0 0,6
0,6 6,0

U:Ù[p]

M:Ù[1_p]

l:Ù[q] r:Ù[1_q]

4,0 4,0D

Figure 6: Down is now better than it was.

Now we again consider the mixture ßR’=™œUÙ⊕Ù™œM, and plot Row’s payoff to this mixed strategy
and to her pure strategies U, M, and D as functions of Column’s mixed strategy q. As we can see in
Figure 7, D now dominates the mixed strategy even though neither pure strategy U or M was dominated.
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In fact we can show that every nondegenerate mixture of Up and Middle is dominated. It will be
useful to plot the expected payoff to Row from a mixture of Up and Middle as a function of Column’s
mixed strategy q. Let’s compute Row’s expected payoff to the mixed strategy pœUÙ⊕Ù(1_p)œM:

uRªpœUÙ⊕Ù(1_p)œM;Ùqº=6[pq+(1_p)(1_q)]=3+6(2p_1)(q_™). (17)

I wrote the payoff in this form to show that the graph of Row’s expected payoff, as a function of q, of
every such mixed strategy is simply a rotation of her pure-strategy payoff to U  (or M) about the
intersection (q=™,u=3) of the two pure-strategy payoff graphs.14 To see this note, that when q=™,
uRªpœUÙ⊕Ù(1_p)œMº=3, for all p. Note also that the slope of graph of uRªpœUÙ⊕Ù(1_p)œMº varies
smoothly with p, coinciding with the slopes of the graphs of uRªM;Ùqº and uRªU;Ùqº for p=0 and p=1,
respectively. See Figure 8.

It is obvious from Figure 8 that Row’s pure strategy Down dominates every mixture of Up and
Middle such that £<p<‹. However, for p≤£, the mixture is at least as good as Down for small q; for
p≥‹, the mixture is least as good as Down for q near one. So we still need to show that these small and
large p mixtures of Up and Middle which are undominated by a pure strategy are dominated by mixed
strategies.

Let’s consider the case where p=5/6. (See Figure 9.) I will show that the payoff to this mixture of Up
and Middle is dominated by a mixture of Up and Down. Exactly as we saw before concerning the graph
                                                

14 The payoff to the mixed strategy is a convex combination of the pure-strategy payoffs; therefore the graph of the mixed-strategy payoff
is a vertical convex combination of the pure-strategy graphs. Therefore the mixed-strategy graph must pass through the intersection of
the pure-strategy graphs.

Figure 7: An equal mixture of U and M is dominated by D
even though neither U nor M is dominated.
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of the payoff to a mixture of Up and Down, you can show that the graph of the payoff to a mixture of Up
and Down is a rotation of the payoff to Up about the point of intersection of the graphs of the pure-
strategy payoffs to Up and Down. The mixture of Up and Down I propose as a dominating mixed
strategy chooses Up with probability ‹. You can show that the graph of Row’s expected payoff to this
mixture has the same slope as her payoff to the mixture of Up and Middle, but is strictly higher, as
shown in Figure 9. Therefore this mixture of Up and Down dominates the mixture of Up and Middle.

Figure 8: The payoff to a mixture of Up and Middle, as a function of q, is a rotation of a pure-
strategy payoff function about the intersection of the two pure-strategy payoffs.
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Figure 9: A mixed strategy, undominated by pure strategies,
can be dominated by a mixed strategy.

Of course this example doesn’t show that every nondegenerate mixture of Up and Middle is
dominated as I claimed earlier. How do I know that I can always find a mixture which dominates any
given mixture of Up and Middle? Now I’ll give a more general argument.

In Figure 10 I’ve indicated the upper envelope of Row’s pure-strategy payoff functions.15 Consider
any line tangent to this upper envelope. Such a tangent might coincide with one of the three pure-
strategy segments; if not, it must be tangent at the intersection between either a the Middle and Down
pure-strategy payoff functions or b the Down and Up payoff functions. Therefore any line tangent to the
upper envelope corresponds to either 1 a pure strategy, 2 a mixture between Middle and Down, or 3 a
mixture of Down and Up.

                                                

15 Let f1,…,fn be functions from some common domain X  into the reals, i.e. fi:ÙXÙ§ÙÂ. Then the upper envelope of these functions is
itself a function f:ÙXÙ§ÙÂ defined by: fªxºÙfiÙmax{f1ªxº,…,fnªxº}.
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Figure 10: The separating hyperplane theorem guarantees the existence of a mixed strategy which
dominates any nondegenerate mixture of Up and Middle.

Note from Figure 8 that any nondegenerate mixture of Up and Middle lies strictly below the upper
envelope displayed in Figure 10. What I need to show then is that, for any such nondegenerate mixture,
there exists a line tangent to the upper envelope which lies strictly above the mixture of Up and Middle.
Then, because every such line corresponds to some mixed strategy, I will have shown that there exists a
mixed strategy which dominates the mixture of Up and Middle.

To show that there indeed exists a line tangent to the upper envelope and above the mixture of Up and
Middle, I pull out the separating hyperplane theorem.16 First note that the graph above the upper
envelope is a convex set.17 The set of points below the mixture of Up and Middle is also a convex set.18

These two convex sets are disjoint, therefore there exists a hyperplane which separates the two sets and
is tangent to the first.19

                                                

16 There are several versions of the separation theorem; see Debreu [1959] or Debreu [1959]. The theorem I would want would say: “Let
A and B be disjoint closed convex sets. Then there exists a hyperplane which supports A (i.e. includes a point on the boundary of A) and
strictly separates B (i.e. so that B is contained within the interior of one of the closed half planes determined by the hyperplane).” I
haven’t found a reference for this exact theorem; typically you find a supporting hyperplane theorem which addresses the issue of a
point on the boundary of A and you can find separating theorems which don’t guarantee that the hyperplane intersects the boundary of
one of the sets. Nevertheless I assert the theorem in quotes with confidence.

17 The set of points above the graph of a convex function is convex. Each of the pure-strategy bounding lines is a convex function. The
points above the upper envelope is the intersection of the points above each bounding line; therefore the points above the upper
envelope are the intersection of convex sets and, hence, are a convex set.

18 The set of points below the graph of a concave function is convex. A hyperplane is both convex and concave.
19 We will see later that this type of construction relies crucially on there only being two players.
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Domination and never-a-best-response

Consider a strategy ßi˙Íi for player i˙I and beliefs ß¥i˙Í¥i which player i holds about the actions of
the other players. If ß i is not a best response for player i to these beliefs ß¥i, then she must have
available a better strategy ßi’˙Íi; i.e. ‰ßi’˙Íi such that uiª¯ßi’,ß¥i˘iº>uiª¯ßi,ß¥i˘iº. It’s conceivable
that there are no beliefs to which ßi is a best response; we say that ßi is never a best response for i if

Åß¥i˙Í¥i, ‰ßi’˙Íi, uiª¯ßi’,ß¥i˘iº>uiª¯ßi,ß¥i˘iº. (18)

If ßi is a dominated strategy for player i, then there exists a strategy ßi’˙Íi which is better-for-i than
ßi regardless of the actions ß¥i of the other players; i.e.20

‰ßi’˙Íi, Åß¥i˙Í¥i, uiª¯ßi’,ß¥i˘iº>uiª¯ßi,ß¥i˘iº. (19)

Note that these two conditions for being never a best response and being dominated, respectively,
though similar, are not identical. The order of appearance of the universal and existential quantifiers is
reversed. From (19) you can easily deduce (18); i.e. a dominated strategy is never a best response.
However, (18) does not simply imply (19); we leave open the possibility that a strategy may never be a
best response but is yet undominated by any other strategy.

Despite the nonexistence of a simple, logical, syntactical deduction of (19) from (18), we will see that
in two-player games it is indeed the case that any strategy which is never a best response is also
dominated; i.e. when n=2, (19)⁄(18).21 Then we will see an example which shows that this
relationship need not hold in general when there are more than two players.

In two-player games: never-a-best-response ⁄ dominated

Without loss of generality consider player 1. Here’s a preview sketch of our demonstration that, for two-
player games, a strategy is never a best response if and only if it is dominated: We have already
observed that if a strategy is dominated it is never a best response. Now we show that if a strategy is
never a best response then it is dominated. The mathematical space we will consider is player 1’s
expected utility plotted against player 2’s mixed strategy. The milestones of the demonstration are: 1
The graph of player 1’s payoff to any player-1 mixed strategy as a function of player 2’s mixed strategy
will be a hyperplane in this space.22 2 The hyperplane corresponding to a dominated strategy lies
everywhere strictly below the hyperplane corresponding to a dominating strategy. 3 The upper envelope

                                                

20 Of course, we know that this set of inequalities could be equivalently written with the substitutions s¥j§ß¥j and S¥j§Í¥j. I write these
this way to emphasize the relationship to the previous set of inequalities.

21 Pearce [1984: Appendix B, Lemma 3] provides an elegant and short proof of this result by constructing a new, zero-sum game from the
original, not-necessarily–zero-sum game and exploiting the existence of a Nash equilibrium. This proof however does not deliver the
same graphical intuition as the approach taken here. Myerson [1991] proves a theorem, which implies this result in two-player games,
using a linear-programming formulation. Fudenberg and Tirole [1991] sketch the proof of a related theorem which has the more
explicitly separating-hyperplane flavor of our approach.

22 Let f:ÙX§Y. The graph of f is {(x,fªxº):Ùx˙X}ÓX˜Y . Therefore the graph of a function lies in the Cartesian product of its domain
and target set.



Strategic Dominance Page 17

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

of the hyperplanes corresponding to player 1’s pure strategies describes player 1’s expected utility when
she chooses her strategy optimally given player 2’s strategy. The hyperplane corresponding to any
strategy which is never a best response must lie everywhere strictly below this upper envelope. 4 Any
hyperplane which is tangent to this upper envelope corresponds to some mixed strategy for player 1. 5 If
a strategy is never a best response, there exists a hyperplane which is tangent to the upper envelope and
which lies everywhere strictly above the hyperplane for the never-a-best-response strategy. Therefore
there exists a strategy which dominates the never-a-best-response strategy, and therefore the never-a-
best-response strategy is dominated. (Figure 11 illustrates this theorem in a case where player 2 has only
two pure strategies. Therefore his mixed-strategy space is the one-dimensional unit simplex, which we
parameterize by q˙[0,1].)

1!The graph of player 1’s payoff to any mixed strategy will be a hyperplane in this space.

We have previously seen that the payoff to a player from a mixed-strategy profile is a linear function
of the mixing probabilities of any one player:23 For any i,k˙I,

(20)

In particular, player 1’s payoff to the mixed-strategy profile (ß1,ß2) is the linear (and therefore convex
and concave) function of the {ß2ªs2º}s2˙S2

u1ª(ß1,ß2)º= cªs2;ß1ºß2ªs2º∑
s2˙S2

, (21)

where the coefficients cªs2;ß1º are given by c:ÙS2˜Í1 defined by

cªs2;ß1º= ß1ªs1ºu1ª(s1,s2)ºS
s1˙S1

. (22)

Therefore the graph of u1ªß1,æº:ÙÍ2§Â  (i.e. for fixed ß1˙Í1) is a hyperplane in the space Í2˜Â,
which we denote by Hªß1º={(ß2,uª(ß1,ß2)º):Ùß2˙Í2}.

                                                

23 See the “Strategic-Form Games” handout.
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2!The hyperplane corresponding to a dominated strategy lies everywhere strictly below the
hyperplane corresponding to a dominating strategy.

If ß1’ dominates ß1, then, for all ß 2˙Í2, u1ª(ß1’,ß2)º>u2ª(ß1,ß2)º and therefore the hyperplane
corresponding to ß1’ lies everywhere above ß1; i.e. Hªß1’º lies everywhere above Hªß1º.

3!The upper envelope of the hyperplanes corresponding to player 1’s pure strategies describes
player 1’s expected utility when she chooses her strategy optimally given player 2’s strategy. The
hyperplane corresponding to any strategy which is never a best response must lie everywhere strictly
below this upper envelope.

Let f1,…,fn be functions from some common domain X into the reals, i.e. fi:ÙXÙ§ÙÂ. Then the upper
envelope of these functions is itself a function f:ÙXÙ§ÙÂ defined by: fªxºÙfiÙmax{f1ªxº,…,fnªxº}.
Consider the finite set of functions {u1ªs1,æº}s1˙S1, where each u1ªs1,æº:ÙÍ2§Â. (These are player 1’s
expected-payoff functions to her pure strategies.) Let u1 be the upper envelope of the {u1ªs1,æº}s1˙S1, i.e.
u1:ÙÍ2§Â and Åß2˙Í2, u1ªß2º=maxÙ{u1ªs1,ß2º:Ùs1˙S1}. For a given ß2˙Í2, if player 1 chooses her
strategy optimally she receives the expected payoff maxs1˙S1Ùu1ªs1,ß2º=u1ªß2º. Therefore the upper
envelope function u describes player 1’s expected payoff as a function of player 2’s strategy when
player 1 chooses a best response to player 2’s strategy.

Denote the graph of this upper envelope function by U; i.e. U={(ß2,u1ªß2º):Ùß2˙Í2}. This upper-
envelope surface is composed of a finite number of linear segments (i.e. pieces of hyperplanes).24 Each

                                                

24 Consider any pure strategy s1˙S1 for player 1 . Let Fªs1º be the set of player-2 mixed strategies for which s1 is a best response for player

Figure 11: A strategy which is never a best response must be
dominated in a two-player game.
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of these faces corresponds to some player-1 pure strategy s1 in the sense that for all ß2 directly below
this face (i.e. in the projection of this face upon Í2) s1 is a best response by player 1 to player 2’s choice
of ß2. The intersections of two or more faces are linear manifolds (i.e. intersections of hyperplanes).
Such a linear manifold might be a single point, a line, or a set of higher dimension. Consider the
projection of such a linear manifold onto Í2. For each ß2 belonging to this projection, any of the pure
strategies corresponding to the intersecting faces is a best response by player 1 to player 2’s choice of
ß2.

Note that, for every player-1 strategy ß1˙Í1, the hyperplane corresponding to ß1, viz. Hªß1º, must
lie everywhere weakly below the upper envelope U. I.e. Åß1˙Í1, Åß2˙Í2, u1ª(ß1,ß2)º≤u1ªß2º. If, to
the contrary, for some ß2˙Í2, it were true that Hªß1º lay strictly above U, then we would have the
contradiction that u1ª(ß1,ß2)º>u1ªß2º=maxÙ{u1ª(s1,ß2)º:Ùs1˙S1}=max Ù{u1ª(ß1,ß2)º:Ùß1˙Í1}.25

If ß1˙Í1 were a best response by player 1 to some beliefs ß2˙Í2, then u1ª(ß1,ß2)º=u1ªß2º.26

Therefore, if ß1 were never a best response, then Å ß2˙Í2, u1ª(ß1,ß2)º<u1ªß2º, and therefore the
hyperplane Hªß1º corresponding to this never-a-best-response strategy must lie everywhere strictly
below the upper envelope U.

4!Any hyperplane which is tangent to this upper envelope corresponds to some mixed strategy for
player 1.

Consider a hyperplane which is tangent to the upper envelope U. If this hyperplane is coincident with
the upper envelope along an entire face of the upper envelope then it corresponds to (i.e. is the graph of)
the expected payoff to player 1, as a function of player 2’s mixed strategy, from the pure strategy which
corresponds to that face. If this hyperplane is tangent at a linear manifold which is the intersection of
two faces, the tangent hyperplane corresponds to the expected payoff to player 1 when she plays some
mixture over the two pure strategies corresponding to the intersecting faces. More generally, if the
hyperplane is tangent to the upper envelope at some point (ß2,u1ªß2º), then this tangent hyperplane
corresponds to the payoff to player 1 from some mixed strategy ß1 which puts weight only on those pure
strategies which correspond to the faces which intersect at the point of tangency. I.e. ‰ß1˙Í1 such that
suppÙß1ÓBR1ªß2º and such that the tangent hyperplane is the graph of u1ªß1,æº over Í2.27

5!If a strategy is never a best response, there exists a hyperplane which is tangent to the upper
envelope and which lies everywhere strictly above the hyperplane for the never-a-best-response strategy.

                                                                                                                                                                        

1; i.e. Fªs1º={ß2˙Í2:Ùs1˙BR1ªß2º}. You can show that for all s1˙S1, Fªs1º is a convex set. Therefore {Fªs1º}s1˙S1
 is a finite partition

of Í2, because the cells of the collection are pairwise disjoint and exhaust Í2. Therefore, for any s1˙S1, the graph of the upper envelope
U over Fªs1º is a hyperplane.

25 Make sure you understand why maxÙ{u1ªs1,ß2º:Ùs1˙S1}=maxÙ{u1ªß1,ß2º:Ùß1˙Í1}!
26 Recall that a mixed strategy ß1˙Í1 is a best response by player 1 to the mixed strategy ß2˙Í2 if and only if suppÙß1ÓBR1ªß2º; i.e. it

puts positive weight only upon pure-strategy best responses.
27 I’m not offering an accessible proof for this claim at the present time. See me this time next year to see whether I’ve worked out an

elegant argument!
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Therefore there exists a strategy which dominates the never-a-best-response strategy, and therefore the
never-a-best-response strategy is dominated.

Now I pull out the separating hyperplane theorem.28 First note that the graph above the upper
envelope is a convex set.29 Consider the graph of the payoff to player 1 from a strategy which is never a
best response. It is a hyperplane and therefore concave. The set of points below this hyperplane is also a
convex set.30 These two convex sets are disjoint; therefore there exists a hyperplane which is tangent to
the higher set and strictly separates the lower set. Because this separating hyperplane is tangent to the
upper envelope U, it corresponds to a mixed strategy for player 1. Because the separating hyperplane
strictly separates the lower convex set, it lies everywhere strictly above the hyperplane corresponding to
the never-a-best-response strategy. Therefore there exists a mixed strategy for player 1 which dominates
the never-a-best-response strategy. ó

Three or more players: never-a-best-response fl dominated

We have seen that in two-player games any strategy which is never a best response must also be
dominated. Now we show that this equivalence between never being a best response and being
dominated does not extend generally to games with more than two players. We show this by exhibiting a
three-player game in which player 3 will have a strategy which is never a best response to any pair of
mixed strategies by the two opponents yet this strategy will not be dominated by any other strategy of
player 3’s.

Consider the game in Figure 12.31 There are three players; player 1 chooses a row (U or D); player 2
chooses a column (l or r); and player 3 chooses a matrix (A, B, C, or D). We will only be concerned with
the payoffs to player 3, so we only include her payoffs in the matrices of Figure 12. Each of players 1
and 2 have two pure strategies, therefore a mixed strategy for each of them can be written in terms of a
single parameter. We indicate the probability that player 1 chooses U by p and the probability that
player 2 chooses l by q.

                                                

28 There are several versions of the separation theorem; see Takayama [1985:Ù39–45] or Debreu [1959]. The theorem I would want would
say: “Let A be a closed convex set and B be a convex set, where A and B are disjoint. Then there exists a hyperplane which supports A
(i.e. includes a point on the boundary of A) and strictly separates B (i.e. so that B is contained within the interior of one of the closed
half planes determined by the hyperplane).” I haven’t found a reference for this exact theorem; typically you find a supporting
hyperplane theorem which addresses the issue of a point on the boundary of A and you can find separating theorems which don’t
guarantee that the hyperplane intersects the boundary of one of the sets. Nevertheless I assert the theorem in quotes with confidence.

29 The set of points above a convex function is convex. Each of the pure-strategy bounding lines is a convex function. The points above
the upper envelope is the intersection of the points above each bounding line; therefore the points above the upper envelope are the
intersection of convex sets and, hence, are a convex set.

30 The set of points below a concave function is convex. (A hyperplane is both convex and concave.)
31 This game is given in problem 2.7 of Fudenberg and Tirole [1991].
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Figure 12: Player 3’s payoffs in a three-player game as a function of Row’s and
Column’s mixed strategies p and q, respectively. Player 3 chooses the matrix.

We first compute player 3’s expected payoff to each of her four pure strategies as functions of the
mixed strategies of her two opponents.

u3ªA;p,qº=9pq, (23a)

u3ªB;p,qº=9[p(1_q)+(1_p)q]=9(p+q_2pq), (23b)

u3ªC;p,qº=9(1_p)(1_q), (23c)

u3ªD;p,qº=6[pq+(1_p)(1_q)]=6(1+2pq_p_q). (23d)

Player 3’s expected payoff to each of her four pure strategies is plotted as a function of p and q in Figure
13.
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Figure 13: Player 3’s pure-strategy payoffs as functions of player 1 and 2’s
deleted mixed-strategy profile (p,q) in the game from Figure 12.
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We notice immediately that, unlike a two-player game, the graphs of the selected player’s payoffs
when plotted against the deleted strategy profile of her opponents are not hyperplanes.32 Although we
previously observed that a player’s payoff is linear in a specified other player’s mixing probabilities, her
payoff is not linear in the mixing probabilities of more than one players.

I want to show that D is not dominated by any of the pure strategies A, B, or C or in fact by any
mixture of A, B, and C. Yet we will see that D is not a best response to any deleted mixed-strategy
profile ß¥3=(p,q) of the opponents.

It is clear from Figure 13 or from equations (23) that D is not dominated by any of the other three
pure strategies. When p=q=1, D gives a higher payoff than B or C. When p=q=0, D  gives a higher
payoff than A (or B, but we’ve already shown that B doesn’t dominate D).

Now we want to show that there is no mixture of A, B, and C  which dominates D .33 Call our
candidate mixed strategy ß3=rœAÄ(1_r_s)œBÄsœC, where r,s≥0 and r+s≤1. In order that ß3
dominate D, it must yield a higher payoff against all deleted strategy profiles (p,q)˙[0,1]2. In particular
this must be the case when p=q=1. Against this deleted mixed-strategy profile player 3’s payoff to the
mixed strategy ß3 is 9r, because B and C yield a zero payoff there, and D pays off 6. In order that 9r>6,
we must choose r>@/3. Similarly, when p=q=0, C provides the only nonzero payoff to ß3. Therefore,
in order that the payoff from ß3 exceed the payoff of 6 from D, the weight on C must be such that
s>@/3. Therefore the two requirements, in order that ß3 dominate D, viz. r,s>@/3 are incompatible
with the requirement that r+s≤1. Therefore there does not exist any strategy which dominates D.

You can show algebraically that D is never a best response. However, for our purposes it will suffice
to clearly show graphically that the payoff from D lies everywhere below the upper envelope of the
pure-strategy payoffs. (See Figure 14.) This example shows that the equivalence between never being a
best response and being dominated does not extend to more than two-player games.

Summary and preview of coming attractions

We began our preparation for the study of nonequilibrium solution concepts by introducing the notion of
strategic dominance. We defined what it means for one pure strategy for a player to dominate another of
her pure strategies. We showed that to evaluate questions of strategic dominance for a player we can
with total generality assume that her opponents are playing pure strategies. We generalized the notion of
strategic dominance so as to define what it means for a mixed strategy to dominate another mixed
strategy. This generalization is useful because it is possible for a strategy to be dominated by a mixed
strategy even when it is undominated by pure strategies.

A rational player would never play a dominated strategy. Therefore we can rule out as observed
outcomes any which involves any player playing a dominated strategy. (When we later make a stronger

                                                

32 In a two-player game, a deleted strategy profile is simply a strategy, because there is only one opponent.
33 Thanks to Sam Dinkin for supplying this part of the demonstration!
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assumption that the rationality of all players is common knowledge, we will apply a stronger technique
called the iterated elimination of dominated strategies to further refine the set of possible observed
outcomes.)

Although we established that a rational player would never play a dominated strategy, it need not be
the case that any undominated strategy could be plausibly chosen by a rational player. I.e. a dominance
analysis need not fully exhaust the implications of all players being rational. We then introduced what it
means for a strategy to be never a best response. We argued that a strategy cannot be plausibly chosen
by a rational player if and only if it is never a best response.

We saw that in two-player games a strategy is never a best response if and only if it is dominated. For
two-player games, then, a dominance analysis does fully exploit the assumption that all players are
rational. (And the iterated elimination of dominated strategies will fully exhaust the implications of
common knowledge of rationality.)

However, for games with three or more players, it is possible that an undominated strategy will yet
never be a best response. Therefore we can sometimes rule out as a plausible choice a strategy even
when it is undominated. For more-than-two-player games, then, a dominance argument will not fully
exploit the assumption that all players are rational. (And therefore the iterated elimination of dominated
strategies will not fully exhaust the implications of common knowledge of rationality. We will instead
iteratively eliminate strategies which are never best responses. This process will yield the
nonequilibrium solution concept of rationalizability.)

Figure 14: The payoff to D lies everywhere below the
upper envelope of player 3’s pure-strategy payoffs.
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