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Introduction

When we model a strategic economic situation we want to capture as much of the relevant detail as
tractably possible. A game can have a complex temporal and information structure; and this structure
could well be very significant to understanding the way the game will be played. These structures are
not acknowledged explicitly in the game’s strategic form, so we seek a more inclusive formulation. It
would be desirable to include at least the following: 1) the set of players, 2) who moves when and under
what circumstances, 3) what actions are available to a player when she is called upon to move, 4) what
she knows when she is called upon to move, and 5) what payoff each player receives when the game is
played in a particular way. Components 2 and 4 are additions to the strategic-form description;
component 3 typically involves more specification in the extensive form than in the strategic form.

We can incorporate all of these features within an extensive-form description of the game. The
foundation of the extensive form is a game tree. First I’ll discuss what a tree is and then describe the
additional specifications and interpretations we need to make in order to transform it into a full-fledged
extensive-form description of the game. We’ll discuss additional restrictions upon the information
structure to reflect a common assumption, viz. perfect recall, which asserts that players don’t forget.
We’ll discuss the relation between this traditional, graph-theoretic exposition and a more recent one
based on the arborescence. After that we’ll learn how to ease our analysis of complicated games by
breaking them up into simpler subgames.

Game Trees

We’ll construct our definition of a tree by first defining more primitive graph-theoretic entities. (Iyanaga
and Kawada [1980: 234–235]). A graph G=(V,E) consists of a finite set V of vertices and a finite set E
of edges of V. An edge e˙E is an unordered pair of distinct elements of V; e.g. the edge e=(v,v’) joins
the two vertices v,v’˙V.
                                                

Ù Û © 1997 by Jim Ratliff , <jim@virtualperfection.com>, <http://virtualperfection.com/gametheory>.
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Consider an alternating sequence of vertices and edges of a graph G , P={v0,e1,v1,e2,…,en,vn}. P is
a path if 1 each edge ei joins its neighbors vi¥1 and vi and 2 no edge is encountered more than once (i.e.
ei≠ej when i≠j).1 In this case we say that vi and vj, for i,j˙{1,…,n}, are connected by P and that P
runs from v0 to vn.2 (Note that a path may encounter the same vertex more than once.) A path is closed if
it begins and ends with the same vertex, i.e. v0=vn. A closed path which never reencounters a vertex,
except for the first, is called a circuit. I.e. a closed path P  is a circuit if vi≠vj whenever i≠j and
{i,j}≠{0,n}. In other words a circuit is a single “loop.” A graph G is connected if for every pair of
distinct vertices v,v’˙V, v≠v’, there exists a path in G which connects v and v’.

Now we’re ready to define a tree. A tree is a connected graph which contains no circuit.3 In game
theory we often refer to the vertices as nodes and, consistent with our dendro-metaphor, to edges as
branches.4 Because a tree is a connected graph, any node can be reached from any other node by
traversing a sequence of branches. Because it has no circuits, a tree is unicursal: for any pair of nodes,
there is exactly one path which runs from the first to the second.

Example: graphs and trees

Figure 1: A graph.

The sets of vertices and edges in Figure 1 form a graph. The edges depicted graphically are defined
by

e1=(v0,v1), e2=(v0,v2), e3=(v1,v2), e4=(v1,v3),

e5=(v2,v4), e6=(v3,v4), e7=(v2,v3).

The following two alternating sequences of vertices and edges are paths:

{v0,e1,v1},"{v0,e2,v2,e5,v4,e6,v3,e7,v2,e3,v1}.

Note in the second case that the vertex v2 is encountered twice. The sequence {v0,e1,v2} is not a path.
Neither is

                                                

1 Let e=(v,v’) and e’=(v’,v) be edges, where v and v’ are vertices. Because edges are unordered pairs, we have e=e’.
2 This “runs from… to” terminology is not standard, but I find it useful for expository purposes here.
3 I.e., no circuit can be constructed from vertices and edges belonging to the graph.
4 My treatment roughly follows that of Kuhn [1953], which is the hugely influential, seminal paper concerning extensive-form games.
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{v0,e1,v1,e3,v2,e7,v3,e4,v1,e3,v2},

because the edge e3 is encountered twice.

The two sequences

{v0,e2,v2,e5,v4,e6,v3,e4,v1,e1,v0},"{v0,e1,v1,e3,v2,e7,v3,e6,v4,e5,v2,e2,v0}

are closed paths. The first is a circuit; the second is not, because the vertex v2 is encountered twice.

Figure 2 shows two connected graphs. The first is a tree; the second is not.

Figure 2: Two connected graphs: (a) a tree and (b) a nontree.

Now we want to enhance our tree to become a game tree. We henceforth assume that the tree has at
least two vertices. We bestow one vertex of the tree with the honor of being the initial node, O. (See
Figure 3.) This is where the game begins. It is a decision node.

w

Figure 3: A game tree.

If a noninitial node x is incident with two or more branches, it is also a decision node. Let XÓV be
the set of decision nodes. (In Figure 3, X={O,å,∫,∂}.) One of these branches leads to the node; the
remaining branches lead away from the node. Since branches are unordered pairs of nodes, how do you
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know which branch leads to the node and which lead away? It’s simple: For some noninitial decision
node x˙X\{O}, find the unique path which runs from the initial node O to node x. That path will contain
exactly one of the branches incident with x; this branch is the one which leads to x. The other branches
incident at v are the branches which lead away from x. For example, in Figure 3, there are three edges
incident at node ∂: g, U, and D. The unique path running from the initial node to node ∂ is {O,L,å,g,∂}.
This path contains only the g edge incident at ∂; therefore g is the branch leading to ∂ and U and D are
the edges leading away.

We interpret each edge e˙E as an action. Let A be the set of all actions and let f:ÙE§A be the
function which assigns an action to each edge. The branches which lead away from a decision node
represent the actions available at that node. We require that, for a given decision node x˙X, the function
f assign a unique action to each branch leading away from x. (Otherwise it would not be well specified
what path would result from a particular action taken at x.) The actions available at any decision node
x˙X are given by the set Aªxº=fª{e˙E:Ùe leads away from x}º.5 (So A is a correspondence A:ÙXéA.)
In Figure 3, AªOº={L,R}, Aªåº=Aª∫º={g,s}, and Aª∂º={U,D}. More than one edge may correspond
to the same action (as long as any such pair of edges does not lead away from the same node). For
example, in Figure 3, there are two edges which correspond to the action g. In what follows I will often
refer to an edge e˙E by its associated action fªeº.6

Any noninitial node with only one incident branch necessarily has no actions available. Such a node
is a terminal node. Let ZÓV be the set of terminal nodes. The tree in Figure 3 has five terminal nodes:
Z={z1,z2,z3,z4,z5}. The decision and terminal nodes partition the game tree’s nodes: i.e. V=X¨Z and
XËZ=õ. The game ends whenever a terminal node is reached. We identify the terminal nodes with
outcomes of the game. (Sometimes outcome is used to refer not just to a terminal node but to the unique
path from the initial node to that terminal node.)

So we have established that the game begins at the initial node and play ends at a terminal node. In
what order are the intermediate decisions made? Consider two distinct nodes v,v’˙V, v≠v’. We say that
v precedes v’, or that v is a predecessor of v’, if v lies on the unique path which runs from the initial
node O to v’. We write vüv’. Equivalently, we say that v’ is a successor of v, and write v’öv. For
example, in Figure 3, the unique path running from the initial node O to ∂ is {O,L,å,g,∂}. This path
contains å but not contain ∫; therefore å is a predecessor of ∂, but ∫ is not.

Predecession, then, defines a binary relation ü on the set of nodes V, viz.

ü={(v,v’)˙V2:Ùvüv’}.7,8 (1)

                                                

5 Recall that if f:ÙX§Y is a function and SÓX, then fªSº is the image of S under f , i.e. fªSº={fªxº:Ùx˙S}.
6 For example, in the previous paragraph I referred to the edge connecting å and ∂ by its action g.
7 A binary relation R on a set X  can be thought of as a subset of the Cartesian product of X with itself, i.e. RÓX˜X, which includes all

those pairs (x,y)˙X2 such that xRy. I.e. (x,y)˙R⁄xRy.
8 The succession binary relation ö is the inverse relation of ü; i.e. Åv,v’˙V, vüv’⁄v’öv; it could also be called the dual order

(except for a minor problem that ü is irreflexive and therefore not actually providing an ordering). (See later footnote.)
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It is intuitively obvious—and you can show rigorously—that the predecession relation is irreflexive
(Åv˙V, not vüv), asymmetric [vüv’flnotÙÙ(v’üv)], and transitive [(vüv’ and v’üv”) fl vüv”]. This
binary relation need not be complete; there may exist a pair of nodes v,v’˙V such that neither vüv’ nor
v’üv. For example in Figure 3, å and ∫ are unordered by precedence. A partial listing of the precedence
relations in Figure 3 is: Oüz3, åüz2, and åü∂.

The initial node is a predecessor of every noninitial node and has no predecessor itself. For every
noninitial node x˙V\{O}, let Pªxº be the set of predecessors of x; i.e. Pªxº={v˙V:Ùvüx}. For example
in Figure 3, Pª∂º={O,å} and Pªz4º={O,∫}. Although predecession provides only a partial ordering in
general on the set V of all nodes, you can show that it totally orders the set Pªxº of predecessors of any
noninitial node x˙V\{O}. (I.e. if v,v’˙Pªxº and v≠v’, then either vüv’ or v’üv.9)10

We say that v is the immediate predecessor of v’ if there is an action available at v (i.e. a branch
incident at v which leads away from the initial node) which leads directly to v’. (This requires that vüv’
and that a single edge joins v and v’. You can prove that each noninitial node has a unique immediate
predecessor.) Alternatively we could say that v is the immediate predecessor of v’ if v=maxüÙPªv’º,
which means that all other predecessors of v’ must also precede v.11 In Figure 3, for example, O is the
immediate predecessor of å but not of ∂, and å is the immediate predecessor of ∂.

We have thus far identified the locations in the tree at which decisions are made—the decision
nodes—and created a structure which relates the various decisions by specifying what actions lead to
which other decisions and in what temporal order. But we still haven’t said who makes which decisions.
We retain our standard player set I={1,…,n}, but we also allow Nature to be player 0 when required.
(We will see later that Nature can be given the job of introducing new information into the game.)

So now we assign to each decision node x˙X exactly one player i˙I¨{0}. We specify this
assignment by a node-ownership function ô:ÙX§(I¨{0}) where each decision node x˙X is assigned to
the player specified by ô ªxº. The set of decision nodes assigned to player i˙I¨{0} is
Xi={x˙X:Ùôªxº=i}. The node-ownership function ô thus induces a player partition  Ù={X0,X1,…,Xn}
of the set X of decision nodes.12 We say that a node belongs to  a particular player or that a player owns a
particular node.

Every terminal node z˙Z represents some outcome which affects the players. Perhaps it’s success for
                                                

9 Note that if a node x˙V has only one predecessor, so that Pªxº is a singleton set, then Pªxº is trivially totally ordered by the binary
relation ü.

10 In my experience it is conventional to require that a binary relation R on a set X  be reflexive (i.e. Åx˙X, xRx) in order that it impose a
preordering upon X. (See Debreu [1959: 7] and Iyanaga and Kawada [1980: 958, 960].) Kreps [1990: 364] explicitly weakens this
notion by defining that “a set is totally ordered by a binary relation if any two distinct elements of the set are ordered in one direction or
the other.” [emphasis added] This allows the concept of totally ordered to be usefully applied to irreflexive binary relations. Note that
for reflexive binary relations the two definitions are equivalent. Kreps [1988: 8] provides alternative terminology for this concept by
saying that a binary relation R on a set X is weakly connected if for all x,y˙X, either x=y, xRy, or yRx.

11 Because Pªv’º is totally ordered by the binary relation ü, we can arrange its elements such that v1üv2üÚüvk. Then vk=maxüÙPªv’º.
12 A partition  of a set A is a collection of cells A1,…,An, such that 1 each AiÓA, 2 the collection is exhaustive, i.e. A1¨A2¨Ú¨An=A,

and 3 the cells are mutually exclusive, i.e. when i≠j, AiËAj=õ.
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one and failure for another; the outcomes may represent profit levels for each firm or lengths of prison
sentences for each criminal suspect. Whatever the outcomes are, they are events over which each player
has preferences. We assume that each player has von Neumann-Morgenstern preferences, which can be
represented by a utility function µi:ÙZ§Â with the expected-utility property, and seeks to maximize her
expected utility.13

Figure 4 shows an extensive-form game elaborated from the tree in Figure 3. I have indicated the
player partition, which assigns players to nodes, by numerical labels and assigned payoff vectors to each
terminal node. By convention the upper entry in each payoff vector is the first player’s utility derived
from that outcome; the second entry is the second player’s utility. The player partition is given by
X1={O,∂} and X2={å,∫}. (Nature does not appear in this game.)

Information sets

In the first paragraph I identified five aspects of an economic scenario we’d capture using the extensive
form. So far we’ve captured the set of players, who moves when and under what conditions, what
actions are available to a player when it’s her turn to move, and what payoffs are received at the end of
the game. The remaining challenge is to represent the information which a player knows when called
upon to move.

What kind of information do I have in mind? We need to be concerned about things which have
changed during the course of the game as a result of the actions of the players.14 The key to representing
information in the game tree is realizing the connection between nodes and history. At any point in the
play of the game the history is a record of who did what when. Remember that game trees are
                                                

13 I’m using µi to represent the utility to player i  of an outcome z˙Z because I want to reserve the symbol ui for later use as her utility to a
strategy profile. (We will see that an outcome z˙Z could be the result of any of several strategy profiles.)

14 If information is entering the game in some other fashion, this can be modeled by the addition of Nature as a nonstrategic player who
chooses her strategy according to a probability distribution. The revelation of Nature’s moves then communicates the exogenously
generated information to the players.

Figure 4: An extensive-form game indicating the player partition
and payoffs as a function of outcome.
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unicursal—there’s precisely one path which runs from the initial node to any given node. Therefore, if
you know the node you have reached, you also know precisely the history of play that got you
there.15,16

We can divide extensive-form games into two classes: In games of perfect information, whenever it is
your turn to move you know precisely where in the tree you are located. Therefore you know the history
of play completely. In games of imperfect information, you might be uncertain about the history of play
when you are called on to play. This uncertainty about history corresponds to uncertainty about which of
several nodes you might be at.

To express this uncertainty we employ the information set. An information set hÓX  is a set of
decision nodes. In the course of playing the game the players’ actions may cause one of your nodes to be
reached. When this occurs, you might not know precisely which of your nodes has been reached. This
uncertainty is captured by saying that you only know that a particular information set has been reached;
all you know is that you’ve reached one of the nodes x˙h in that information set. It is as if you are sent a
message, whenever it is your move, specifying the information set you have reached.

There are some obvious restrictions we need to impose on the composition of information sets. First,
each decision node must belong to exactly one information set. (If a node belonged to more than one
information set, it wouldn’t be well defined what message its owner should receive when that node is
reached.) Therefore the set H of all information sets forms a partition of the decision nodes: X=Uh˙HÙh
and Åh,h’˙H, hËh’=õ. We can also define an information-set membership function h:ÙX§H, which
specifies an information set h˙H for each decision node x˙X according to hªxº=h⁄x˙h.

Secondly, all of the nodes in an information set must belong to the same player. (I.e. Åh˙H,
Åx,x’˙h, ôªxº=ôªx’º.) Otherwise, two or more players may think it is their turn to move.17 (Therefore
the information partition H is a refinement of the player partition Ù={X0,X1,…,Xn}, because for each
information set h˙H there exists a player i˙I¨{0} such that this information set is entirely contained
within player i’s set of nodes, i.e. such that hÓXi.18)

We can partition the set H of information sets into sets of information sets which belong to each
player: For every player i˙I¨{0}, the set Hi={h˙H:ÙÅx˙h,ôªxº=i} contains the information sets

                                                

15 Note that this wouldn’t be the case if we were playing the game represented by the nontree of Figure 1b. If we had reached the bottom
node, we wouldn’t know whether we had arrived there via the clockwise or counterclockwise path from the top initial node.

16 You might object that in the real world there often are many different ways to reach the same result. Such a situation can be modeled
within this framework. You would still have a different terminal node for each of these histories; but you would assign the same payoff
vector to each of these terminal nodes.

17 “But what’s wrong with that? Perhaps it’s a simultaneous move game. Then it would be perfectly kosher to have two players believing
it’s their turn,” you say. In an extensive-form representation a simultaneous-move game is modeled as a sequential game where the
second mover doesn’t get to observe the first mover’s choice at least until after the second mover has played. We’ll discuss simultaneity
further later.

18 One partition is a refinement of a second partition if each cell of the first is a subset of some cell of the second. More formally…. Let
˜={Mi}i˙{1,…,m} and ˆ={Ni}i˙{1,…,n} be two partitions. M  is a refinement of N, denoted ˜üˆ , if ÅMi˙˜, ‰Nj˙  ̂ such that
MiÓNj. In such a case we say that ˆ is coarser than ˜.
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owned by player i. Therefore, for all i˙I¨{0}, Uh˙HiÙh=Xi.

In general, for any information set h˙H, ôªhºfi{ôªxº:Ùx˙h} would refer to the image of the set of
nodes h under the node-ownership function ô; i.e. ôªhº would be the set of players who owned one or
more nodes in h. However, since all nodes in h are owned by the same player, we see that ôªhº is single
valued; i.e. Åh˙H, #ôªhº=1. Therefore we can also consider, with some abuse of notation, ô to be an
information-set ownership function ôªhº={i˙I¨{0}:ÙÅx˙h,ôªxº=i}. As with decision nodes, we say
that an information set belongs to a particular player or that a player owns a particular information set.

Thirdly, every node in an information set must have the same set of available actions. Otherwise the
player wouldn’t be sure which actions were truly available to her. I.e. Åh˙H, Åx,x’˙h, Aªxº=Aªx’). It
is useful then to refer to the set of actions available at an information set h˙H, viz. the image of h under
the correspondence A: Aªhº=Ux˙hÙAªxº, because for all nodes in the information set Aªhº is the set of
actions available there: Åx˙h, Aªxº=Aªhº.

We can summarize these last two restrictions by

Åh˙H, Åx,x’˙h, ôªxº=ôªx’º and Aªxº=Aªx’º. (2)

An information set may be a singleton—it may consist of only a single node. If every information set
of every player is a singleton, we have a game of perfect information; i.e. Åh˙H , #h=1 , or
equivalently: Åi˙I¨{0}, Åh˙Hi, #h=1. If any information set contains more than one node—i.e.
‰i˙I¨{0}, ‰h˙Hi, such that #h>1—then the game is one of imperfect information. When an
information set contains more than one node, we indicate this graphically on the extensive form by
connecting all of the nodes in that information set with a dashed line. Singleton information sets require
no special ornamentation. For example, the game in Figure 4 has perfect information; therefore

H1={{O},{∂}},"H2={{å},{∫}}. (3)

Return to the perfect information game of Figure 4. If we change the information structure so that
player 1’s first move is unobserved by player 2 by the time player 2 makes his first move, then he
doesn’t know at which of his two nodes he is located. We indicate this information imperfection by
connecting these two nodes with a dashed line. (See Figure 5a.) Each of player 1’s two nodes belongs to
its own information set. In this game then there are three information sets: two belonging to the first
player and one belonging to the second. Note that, as required, player 2 has the same two actions, viz. g
and s, available at both nodes of his information set; Aªåº=Aª∫º={g,s}. Contrast each player’s
collection of information sets in this game, viz.

H1={{O},{∂}},"H2={{å,∫}}, (3)

with those given in (3) for the game in Figure 4.

The pseudo–extensive form of Figure 5b has two violations of the restrictions upon information sets.
One information set consists of nodes belonging to different players. (Consider the information set
h={å,∫}, where ôªåº=2 but ôª∫º=3.) A second information set has different actions available to its
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player at different nodes. (Consider the information set h’={∂,©}, where Aª∂º={U,D} but
Aª©º={L,C,R}.)

In summary, then, an extensive-form game Ì is defined by a tree (V,E), a distinguished vertex O, a
set of actions A, an action-for-edge assignment function f:ÙE§A, an information partition H  of the
decision nodes X, a player set I, a node-ownership function ô:ÙX§I¨{0}, and player payoff functions
µi:ÙZ§Â for i˙I. From this definition the following entities can be derived: the set X of decision nodes,
the set Z of terminal nodes, the set of actions Aªxº available at each decision node x˙X, the player
partition Ù, and the precedence relation ü on V. It is further required that, for each information set h˙H,
every node in h shares the same player-owner and shares the same set of available actions: Åh˙H,
Åx,x’˙H, ôªxº=ôªx’º and Aªxº=Aªx’º.

Games of perfect recall

We’ve established some restrictions on what nodes we can include in the same information set: We can
only draw dotted lines which connect nodes which belong to the same player and at which the same set
of actions is available. Now I’ll present two extensive-form fragments which might suggest additional
restrictions.

In Figure 6a, at node å player 1 can choose Left and turn the move over to player 2 or she can choose
Right and immediately move again. If she chooses Right, she reaches node ∫, which is in the same
information set as the node å from which she had just come. Note what this particular information set
construction implies: When player 1 chose Right at node å, she realized what she was doing. When she
then reaches ∫, she doesn’t know whether she’s at ∫ or back at å. Therefore she no longer knows that
she chose Right when at å; she has forgotten the action she just took.

It is typical in game theory to restrict ourselves to games of perfect recall. In such games a player
always know what actions she has taken and never forgets anything she ever knew. How do we

1

2 2

1

L R

U D

g s g s

å

∂

∫

O

1

U D

1

2 3

L R

g s g s

1

L C R

(a) (b)

å

∂

∫

O

©

Figure 5: A game of (a) imperfect information and (b) implausible information.
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formalize this restriction?19 We can rule out the game fragment in Figure 6a with the following
requirement: If two nodes are in the same information set, then neither can precede the other. (Åh˙H,
Åx,x’˙h, neither xüx’ nor x’üx.)

However, that requirement isn’t sufficient. Consider Figure 6b. Nodes ∂ and © are both in the same
information set. There are two ways player 1 can reach that information set: She can be at node å and
choose stop, or she can start at node ∫ and play Up. Note that å and ∫ are not in the same information
set; therefore they represent different information—different histories. If player 1 reaches å she knows
that she reached å but never passed through ∫; if she reaches ∫ she knows she reached ∫ but never
passed through å. But if she reaches the {©,∂} information set via node å, say, she cannot possibly
know that she didn’t pass through ∫. (If she did know this, then she would know for certain that she is at
node ∂. But that would violate the information set’s knowledge restriction that she doesn’t know which
of the two nodes ∂ and © she is at.) Therefore she has forgotten something she knew earlier; so this
would be a violation of perfect recall.

The extensive-form fragment of Figure 6b doesn’t violate the prohibition that members of the same
information set should not be ordered by precedence; so we need a stronger restriction. The formal
characterization of this restriction is extremely arcane and abstruse.20 I’ll try to motivate it the best I
can.

Consider two nodes ∂ and © which belong to the same information set for player 1. Now consider a
player-1 node å which precedes ∂ when player 1 chooses the action a at å. (See Figure 7a.21) When
                                                

19 There are two reasons to be interested in perfect recall. The first is that most if not all games we would be interested in analyzing would
satisfy this property. (But for precisely this reason there would be little point in formalizing the restriction.) More important
theoretically, however, is that the restriction to games of perfect recall allows a simplification in the analysis of these games: We will
see later that in games of perfect recall there is an equivalence between mixed strategies and behavior strategies such that we can
choose whichever analytical perspective is more convenient.

20 See Fudenberg and Tirole [1991: 81], Kreps and Wilson [1982: 867], Kreps [1990: 374–375], and Myerson [1991: 43–44]. The
property so defined will prove sufficient for a later demonstration of the equivalence between mixed and behavior strategies. Kuhn
[1953: 213] defines a weaker property, which he also calls perfect recall. Although this is a misnomer, his property is necessary and
sufficient for the equivalence.

21 The “ “ indicates that å is a predecessor of ∂ but not necessarily an immediate predecessor.
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1 1
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å ∫

∂ ©
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L R

å

∫

(a) (b)

Figure 6: Two game fragments with forgetful players.
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player 1 chooses a at å, she knows 1 that she has passed through å’s information set and 2 that she
chose the action a at å’s information set. In order that the requirements of perfect recall be satisfied, she
must still know these two facts when she gets to ∂.

Indeed, even if she instead arrives at a different node, say ©, in ∂’s information set, she must still
know exactly the same information she would know at ∂. (If she knew different facts at ∂ than at ©, she
would be able to distinguish between the two nodes, contradicting that they are in the same information
set.) Therefore at © she must also know that she passed through å’s information set and chose a there.
So we require that every node © in ∂’s information set have a predecessor ∫ in å’s information set such
that choosing a at ∫ leads eventually to ∂. (We don’t rule out that å and ∫ may be the same node. This
case is shown in Figure 7b.)

Hopefully the following requirement which expresses that an extensive form satisfies perfect recall
will now make sense: For any player-i nodes å , ∂, and © such that 1 ∂ and © belong to the same
information set and 2 å precedes ∂ via action a at å, it must be the case that there exists a player- i node
∫ which belongs to å’s information set and which precedes © via action a at ∫.22

Before we state this more formally, let’s develop one additional piece of notation. Consider a node å
which precedes a node ∫. Let a be the action at node å which is required in order for play to arrive at ∫.
Then we say that åÄaé∫. In other words the unique path which runs from å to ∫ is of the form:
{å,a,…,∫}.

Now we can say that a game satisfies perfect recall if: for all triples of decision nodes, å,∂,©˙X, and
for all actions a˙Aªåº available at node å such that 1 ôªåº=ôª∂º=ôª©º, b hª∂º=hª©º, and c åÙ⊕Ùaé∂,
there exists a node ∫˙hªåº such that ∫Äaé©.

                                                

22 We earlier required that, if two nodes belong to the same information set, neither can precede the other. You can show that this original
requirement is implied by the newer condition.

Figure 7: Establishing anti-amnesia requirements.
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Arborescences

The graph-theoretic formulation of the extensive form we have presented here originated with Harold
Kuhn [1953]. Kreps and Wilson [1982] offered an alternative formulation, where they replaced the
standard definition of a tree with an entity called an arborescence.23 They claim that their formulation is
equivalent to Kuhn’s. I will briefly present the relevant part of the Kreps-Wilson formulation in order to
demonstrate that the arborescence requirement is unintentionally too weak to guarantee that Krepsonian
extensive forms are legitimate game trees. (Ratliff [1991])

We earlier defined a tree as a set of nodes and a set of branches (each of which joined a pair of
nodes). Kreps and Wilson define an arborescence as a set of nodes and a binary relation ü, called
precedence, which is asymmetric, transitive, and such that the set of predecessors of a given node is
totally ordered by ü. This “totally ordered” condition means that: if two nodes å and ∫ both precede a
third node ©, then either å precedes ∫ or ∫ precedes å.24

These properties of the precedence relation ü are well suited to rule out many node configurations
which would not be legitimate trees. For example, transitivity combined with asymmetry rules out the
“cycle in play” configuration in Figure 8a: From the diagram we see that åü∫, ∫ü©, ©ü∂ and ∂üå.
Transitivity then implies that åüå, which violates asymmetry.

Figure 8: Three nontrees; two are captured by the
Kreps-Wilson arborescence filter; one escapes.

The connected graph in Figure 8b is not unicursal; there are two paths joining å and ©, for example.
This configuration is ruled out by the requirement that the precedence relation totally order the
predecessors of any given node. To see this we observe that å, ∫, and ∂ are all predecessors of ©.
However, the set {å,∫,∂} is not totally ordered by ü, because ∫ and ∂ are not related by precedence; i.e.
we have neither ∫ü∂ nor ∂ü∫.

An even simpler nontree does slip through their filter, however. Consider the three-node connected
                                                

23 See also Kreps [1990: section 11.2, especially pages 363–365].
24 Note that these are exactly the properties we have already attributed to the precedence relation we defined in the graph-theoretic tree

framework. What Kreps and Wilson are trying to do here is to go the other way: derive a tree from the binary relation itself.
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graph in Figure 8c. We observe that the predecessors of each node are totally ordered by the precedence
relation ü: The node å has no predecessors, so satisfaction is trivial. The node ∫ has å as its single
predecessor; a singleton set is trivially ordered. The node ∂ has two predecessors, viz. å and ∫. These are
ordered because åü∫. Therefore the connected graph of Figure 8c is an arborescence but is definitely
not a tree, because it contains a circuit. Therefore there exist arborescences which are not trees; therefore
an arborescence need not be a legitimate model for an extensive-form game.

Simultaneity

Consider the case in which two players will each take an action at the same time. Clearly an important
implication of this temporal structure is that neither player can observe the other’s choice before making
her own choice. For example in Figure 9a we depict a game in which player 1 chooses from Up and
Down and player 2 chooses from left and right, and these choices are made simultaneously.

Figure 9: Two extensive forms of the same simultaneous-move game.

Our tree formalism requires that we represent the choices as being sequential. In order to provide
equivalence between a sequential representation and a nonsequential game, we extract the relevant
information structure from the simultaneous-move game and replicate it in the extensive form. In other
words we connect player 2’s nodes into a single information set. In this way we ensure that, even though
his move is depicted as coming after player 1’s, he does not observe player 1’s move before he makes
his own choice. By making his move in ignorance of his opponent’s, player 2 is making his choice with
exactly the same information he would have if the two players moved simultaneously. Note that it was
arbitrary that we depicted player 1’s choice as coming before player 2’s. We could just as easily have
reversed the roles. This would result in the extensive form of Figure 9b.

Divide and conquer: subgames

Extensive-form games can be very complicated. Tackling a huge game tree in a single bite can be an
impossibly formidable undertaking. Fortunately, we can often identify pieces of large games which are
themselves simpler games. If we first take the time to identify and understand these simpler pieces we
can greatly ease our analytical burden. We will also be able to strengthen our to-be-introduced
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extensive-form solution concepts by imposing them not only on the game as a whole but also upon these
pieces of a game. The pieces of a game we seek are called subgames.25

The concept of a subgame is intended to capture the notion of “today is the first day of the rest of
your life.” A subgame is a subset of the original game. In order to define a subgame we impose
conditions which guarantee that 1 the subset makes sense as a game in its own right and 2 it must be
played under the same informational conditions under which that subset would be played if encountered
in the original game. (I.e. if this subgame were reached in the larger game, it would be common
knowledge that this is the game remaining to be played.)

Consider an extensive-form game Ì. In order to define the subgames of Ì we first define how we
would decompose the game Ì at some decision node vÆ˙X to create the extensive-form object ÌÆ.26 (ÌÆ
may not be a legitimate game for our purposes, so I describe it agnostically as merely an object.) If vÆ
happens to be the initial node O, then let ÌÆ=Ì. Otherwise, find the unique edge which immediately
precedes vÆ and delete it. Now we’re left with two trees, only one of which contains vÆ. (See Figure 10.)
Let this tree be the graph (V,E), where VÓV and EÓE. This is the subtree we want. Designate vÆ˙V as
the initial node of ÌÆ. We note that V consists only of vÆ and its successors in the original game. This
implies that ÌÆ is closed under succession: i.e. if v˙ÌÆ and v’öv in Ì, then v’˙ÌÆ.

ÌÆ

vÆvÆ
eÆ

Ì

(a) (b)

Figure 10: (a) A tree Ì. (b) Ì decomposed at vÆ into two components by deleting the edge eÆ.

To complete the specification of ÌÆ we stipulate that it inherits much of the structure of the original
extensive-form game Ì by restriction when necessary of the original entities to the new game tree.27

Specifically we restrict the original action-for-edge assignment function f to the residual set of edges E,

                                                

25 See Kreps and Wilson [1982: 865–869] and Fudenberg and Tirole [1991: 94–95].
26 See Kuhn [1953: 203–204].
27 Let f:ÙX§Z be a function and let Y be a set with a nonempty intersection with the domain X, i.e. XËY≠õ. Then we can define a

function f, the restriction of f to Y, as a function whose domain is XËY  and which agrees with f for all points in XËY . I.e.
f:Ù(XËY)§Z and Åx˙(XËY), fªxº=fªxº. In the special case where YÓX, f:ÙY§Z and Åx˙Y, fªxº=fªxº.
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and we restrict the node-ownership function ô and the payoff functions µi to the residual set of nodes V.
We create a new information partition H by replacing each information set h˙H with h=hËV. The
remaining entities—the residual set of decision nodes X=XËV (note that any decision node x˙X in the
original game which also belongs to the new game is also a decision node in the new game), the residual
set of terminal nodes Z=ZËV (ditto for terminal nodes), the correspondence A:XéA describing the
actions available at each decision node, and the binary relation üÓV˜V—can be derived from these
restricted primitive objects.

Although ÌÆ as we have defined it here is a well-formed game, it might not be a legitimate subgame
for our purposes. We want to ensure that, if this new game were reached in the course of play of the
original game Ì, it would be common knowledge to the players that it was indeed this game ÌÆ
remaining to be played. In particular we want a subgame to “preserve” or “respect” information sets: If
h˙H is an information set in the original game, then we want this information set to either appear
completely intact as an information set in the new game or be totally excluded from the new game. We
can state this requirement as h˙Hfl(h˙H or hËX=õ).28

Note that this implies—as long as Ì is a game of perfect recall—that the new initial node vÆ must
have been a singleton information set in the original game.29 Note that the entire game is always a
subgame of itself.30

In summary, a subset of an extensive-form game (as formally defined by restriction above) forms a
subgame if you can find a node vÆ in the subset such that all of its successors and only its successors in
the original game belong to this subset and “information sets are preserved.”31 This last condition
requires that any information set of the original game is either totally absent from the subset or appears
completely intact in the subset. The payoffs to the terminal nodes of the subgame are obtained by
restriction of the payoffs of the original game to the terminal nodes of the subgame.

Figure 11 shows a game in extensive form with four conjectured subgames—A, B , C , and
D—outlined.32 A and B are true subgames. However, C is not a subgame because it cannot be formed
from the original tree through decomposition by the deletion of a single edge. (Alternatively: because for
                                                

28 The extensive-from object ÌÆ derived by decomposition from Ì is often called a subgame and, after imposing the restriction that
information sets are preserved, becomes a proper subgame. However, proper subgames are the only kind of subgames we will be
interested in. Therefore it would be quite inconvenient to have to attach the “proper” modifier every time we wanted to refer to one.
Therefore I will use subgame only to refer to proper subgames in this sense.

29 ÌÆ contains only vÆ and its successors in the original game. If vÆ shared a common information set in Ì with a distinct node v, then v
would be required to belong to ÌÆ (by preservation of information sets) and hence v must be a successor of vÆ in Ì. However, if Ì is a
game of perfect recall, then all nodes within an information set in Ì must be unordered by precedence, contradicting that vÆüv.

30 There is an occasional confusion about the meaning of “proper subgame”: the definitions in Kreps and Wilson [1982: 868] and Kreps
[1990: 423] agree with the explicit statement in Fudenberg and Tirole [1991: 94–95] that “proper” does not refer to strict inclusion as it
does in the term “proper subset.” Friedman [1990: 44] says indeed that a proper subgame is a subgame which is strictly smaller than the
original game. Reader beware!

31 An alternative statement of the requirement that the subset contain exactly vÆ and its successors would be: the subset is closed under
succession and vÆ precedes every other node in the subset.

32 The outlining boxes are not meant to indicate that the edge going into the first node is part of the conjectured subset. The conjectured
subset begins with the first node itself.
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any choice of decision node in C there would be nonsuccessors in C.33) D is not a true subgame because
it does not preserve information sets: the information set to which å belongs in the original game is
neither wholly contained nor wholly excluded from the conjectured subgame.

1 ∫

D

C

22

11 3

A

1

3 3B å

Figure 11: An extensive form and four conjectured subgames.

                                                

33 Another alternative argument: although C is closed under succession, there does not exist a node in C which precedes all other nodes in
C.
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