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Recapitulation

We are now studying dynamic games—in which some decisions are made after others. We use the
extensive form because it allows us to make explicit this temporal structure as well as to define the
game’s information structure. (The results of previous decisions by one player may not be observable
immediately, if ever, to her opponents.)

We introduced the game tree as the supporting framework for the extensive form. Choices are made
at decision nodes, which belong to the set X. One of these, viz. O, is designated the initial node, at which
the game begins. It is assigned either to one of the players in the player set I={1,…,n} or to Nature;
Nature would make a random choice representing any exogenous uncertainty by some or all of the
players. Play progresses from node to node based on the players’ decisions. The game ends when any
one of the terminal nodes, which belong to the set Z, is reached, at which point the players are awarded
the payoffs corresponding to that node. Player i’s preferences over terminal nodes are represented by her
von Neumann-Morgenstern utility function µi:ÙZ§Â; namely, if terminal node z˙Z is reached, her
utility is µiªzº.

When called upon to move, a player might not know precisely at which of her nodes she is located.
Her uncertainty is modeled by information sets. An information set h˙H is a set of nodes, all belonging
to the same player and at all of which the same set of actions is available. When called upon to act, a
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player is informed only of the information set which has been reached, i.e. that she is located at some
node in that information set. We typically impose additional constraints on the structure of the
information partition to assure that the game is one of perfect recall—one in which a player always
knows what move she takes and she never forgets anything she ever knew.

We saw that an extensive game could often be decomposed into smaller parts called subgames, which
are subtrees which respect information sets. A subgame makes sense as a game by itself, and the
subgame embodies the informational conditions under which it would be played if reached in the
original game. (If the subgame were reached in the larger game, it would be common knowledge that
this was the game remaining to be played.)

Strategy profiles of extensive-form games

A player’s strategy specifies what action she would take whenever called upon to move. To be more
precise: A player’s strategy is a specification of what action she would implement at each of her
information sets. We require the strategy to be in general a function of the information set because
knowledge of the information set which has been reached is all the information a player has when called
upon to move, and we certainly couldn’t let a player’s decision depend on information she doesn’t have.

For example, in the game depicted in Figure 1, player 1 has four information sets: å, ∂1, ∂2, and ∂3, so
H1={å,∂1,∂2,∂3}.1 (Note that information set ∂3 contains two nodes, while the other three information
sets are singletons.) Therefore a strategy for player 1 would be a 4-tuple of strategies, containing one
strategy for each of her information sets, which we could write in the following form:

s1= (s1ªåº,s1ª∂1º,s1ª∂2º,s1ª∂3º), (1)

where each s1ªhº is a specification of her action at the information set h˙H1. For example consider the
strategy

s1=(Y,D,D,U), (2)

which is graphically depicted by the thick gray line segments in Figure 2. (Note that the “U” for the
doubleton information set ∂3 generates two thick line segments, because there are two nodes in that
information set and therefore two nodes at which that information set’s action would be taken.)

                                                

1 Note that in the previous handout: “Extensive-Form Games,” we commonly labeled nodes in a tree. Here I’m labeling information sets.
E.g. “å” here is the singleton information set which contains the initial node: å={O}.



Strategies in Extensive-Form Games Page 3

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

Figure 1

Similarly, player 2 has two information sets ∫1 and ∫2 (both singletons), i.e. H2={∫1,∫2}. His
strategies are of the form

s2=(s2ª∫1º,s2ª∫2º). (3)

For example the strategy

s2=(r,l), (4)

is graphically depicted by the darker thick line segments in Figure 2.
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Figure 2: The strategy profile (Y,D,D,U;r,l).

A strategy profile is an n-tuple of individual strategies, one strategy for each player. Specifying a
strategy profile completely determines the outcome of the game. We can write a strategy profile as a
concatenation of the strategies for each player; i.e. it is of the form:

s=(s1ªåº,s1ª∂1º,s1ª∂2º,s1ª∂3º;s2ª∫1º,s2ª∫2º).2 (5)

The strategy profile corresponding to our exemplar strategies (2) and (4) would be

s=(Y,D,D,U;r,l). (6)

This strategy profile is represented in Figure 2 by the union of the gray segments and the darker thick
line segments. Notice that the graphical representation of this strategy profile is not connected; i.e. there
are disjoint pieces. There is only one component of this union which reaches from the initial node å to a
terminal node.3 This is the path which corresponds to the strategy profile s. Its outcome is the starred
terminal node.

We can be more formal in defining a player’s extensive-form strategies. Recall that Hi is the set of
player i’s information sets and, for any player-i information set h˙Hi, Aªhº is the set of actions available
to her at that information set.4 A strategy si for player i specifies an action for each information set;
therefore for each h˙Hi we represent player i’s choice at h by siªhº˙Aªhº. A strategy si is an #Hi-tuple
of actions. The set of actions which player i has available somewhere is the union of the actions she has

                                                

2 The semicolon serves to separate the two strategies in the profile.
3 You might find it challenging to prove this in general using graph theory.
4 See “Extensive-Form Games.”
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available at each information set, viz. AifiÙUh˙HiÙAªhº; so we can describe her strategy as a function
si:ÙHi§Ai. Her strategy space is the Cartesian product

Si= AªhºX
h˙Hi

. (7)

As we did in the case of strategic-form games, we denote the space of strategy profiles by SfiXi˙IÙSi.

Each strategy profile s˙S results in a particular terminal node z˙Z being reached with certainty. We
denote the identity of this terminal node by zªsº; i.e. z:ÙS§Z is a function from strategy profiles into
terminal nodes. Player i’s utility associated with this strategy profile is her utility for the terminal node
reached when that strategy profile is played. Therefore we define for each player i the function
ui:ÙS§Â, which specifies player i’s utility for any pure-strategy profile by: Ås˙S,

uiªsºfiµiªzªsºº. (8)

As usual we let u:ÙS§Ân be the n-tuple of individual utility functions ui.

The strategic form of an extensive-form game

Recall that when we studied strategic-form games we specified a game by a triple: (I,S,u), where I was
the player set, S was the space of strategy profiles, and u was an n-tuple of player utility functions
ui:ÙS§Â.5 In this framework, strategy was a primitive concept: A pure-strategy si had no internal
structure and a player’s strategy space Si was part of the specification of the game. In the extensive form,
on the other hand, the game tree, the player partition Ù (which assigns decision nodes to players), the
information partition H (which assigns decision nodes to information sets), and the sets of actions Aªxº
available at the decision nodes x˙X are primitive specifications of the game. A player’s strategy space Si
is derived from these according to (7).

How then can we construct a strategic-form representation of an extensive-form game? We need to
provide the constituents of the (I,S,u) triple. The player set I can obviously be supplied directly.
Likewise, once we have constructed each player i’s strategy space Si from the extensive-form primitives
according to (7), we can simply supply their Cartesian product S as the space of strategy profiles for the
strategic-form representation. To complete the strategic-form specification we pass along the utility
function u:ÙS§Ân constructed from the utility functions ui from (8).

One consequence of this one-to-one correspondence between strategic-form and extensive-form
strategies is that we can find the pure-strategy Nash equilibria of an extensive-form game in extensive-
form strategies by finding the pure-strategy Nash equilibria of the game’s strategic form. (Consider a
conjectured Nash-equilibrium pure-strategy profile sÆ. When viewed as extensive-form strategies, player
i will have a better strategy than siÆ against s¥iÆ if and only if she does when they are viewed as

                                                

5 See “Strategic-Form Games.”
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strategic-form strategies.)

Example: Constructing the strategic form of an extensive-form game.

Consider the extensive-form game in Figure 3a. Player 1’s strategy space is S1={U,D}; player 2’s is
S2={(l,l),(l,r),(r,l),(r,r)}, where we write a typical strategy for player 2 as a pair: (action if player 1
chooses U, action if player 1 chooses D).

1
U D

(2,1) (6,3)

2

rl

(4,0) (8,5)

2

rl

2,1 2,1
4,0 8,5

6, 3
4, 0

6, 3
8, 5

l,l l,r r,l r,r

U
D

(a) (b)

Figure 3: A game in (a) extensive form and (b) strategic form.

In order to cast an extensive-form game into strategic form we simply identify each extensive-form
pure strategy si with a strategic-form pure strategy. To construct the bimatrix representation of this game
we assign player 1 to rows and player 2 to columns, listing each player’s strategies along her side of the
bimatrix. To find the payoff vector corresponding to any given cell (strategy profile) we identify the
path determined by that strategy profile; the payoff vector located at that terminal node is the one
entered into the bimatrix. For example, consider the strategy profile (D;r,l). This strategy pair is
displayed in Figure 4; the payoff vector (4,0) located at the end of its path is entered into the
corresponding cell of the bimatrix of Figure 3b. The payoff vectors for the other strategy profiles are
calculated similarly.

1
U

(2,1) (6,3)

2

l

(4,0) (8,5)

2

rl

D

r

Figure 4: The strategy profile (D;l,r).

Note that there are four payoff vectors in the extensive-form representation in the game in Figure 3a,
and there are eight payoff vectors in its strategic form. For any strategy choice by player 1, one of player
2’s information sets will be “off the path.” For example, when player 1 chooses Up, player 2’s right-
hand information set is off the path. Player 2’s choice at an off-the-path information set is irrelevant to
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the payoff. This explains why more than one strategy profile can result in the same outcome—for
example why the payoff vectors corresponding to (U;l,l) and (U;l,r) are the same.

Several extensive forms can have the same strategic form. For example, you can easily show that both
extensive forms in Figure 5, which represent a simultaneous-move game, have the same strategic form.

Figure 5: Two extensive forms of the same simultaneous-move game.

When Nature takes her turn at bat

Our game-playing agents do not always completely control their destinies; significant events can occur
which are exogenously determined. If these events occur and are revealed to the players in such a way as
to make them common knowledge prior to the commencement of the game, the occurrences can be built
into the structure and payoffs of the extensive-form game. In this class of cases our present framework is
adequate without enhancement.

However, it is possible that the players know that some event has, will, or might occur, but that one or
more of the players are uncertain, when called upon to move, of exactly which event occurred. For
example, when two oligopolistic firms simultaneously choose their output levels for their new no-
cholesterol French fries, they are uncertain whether the University of Arizona College of Medicine will
soon issue a report showing that cholesterol is actually health promoting. (See, for example, Allen
[1973].) In an alternative scenario one firm, thanks to a spy in the relevant research laboratory, would
know whether or not this will happen, while the other firm would not be privy to this information.

We incorporate uncertain exogenous events into the extensive form by introducing Nature as a
nonstrategic player who acts randomly. By saying that Nature is nonstrategic I mean that her action is
not influenced by the actions of the “real,” strategic players. Nature is not an optimizer; we don’t need to
specify payoffs for her. Figure 6 represents the extensive form for the two-firm case of the above-
described game in which neither firm knows whether bad news will be published.6

                                                

6 Note that all four of player 2’s nodes are in one information set. He can see neither Nature’s move nor his opponent’s.
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How do we construct the strategic form of an extensive-form game when Nature has a turn? In the
game of Figure 6 Nature’s random choice induces a probability distribution over the nodes in player 1’s
information set. Let p be the probability that Nature sends bad news. Each player has one information
set and two actions at each information set; therefore each player’s strategy space contains two
strategies. Therefore the strategic form will be a 2˜2 bimatrix. Let p=™ and let’s compute the expected
payoff vector to the pure-strategy profile (L;H); i.e. when firm 1 chooses the Low quantity and firm 2
chooses the High quantity. (This strategy profile is depicted in Figure 7.)

There are two terminal nodes which can be reached when player 1 chooses L and player 2 chooses H,
viz. the second and sixth from the left with payoff vectors (¥1,¥3) and (5,15), respectively. The first of
these is reached under the pure-strategy profile (L,H) when Nature sends bad news; the second is
reached when “no news is good news.” Therefore the expected payoff vector to (L,H) is

™(¥1,¥3)+™(5,15)=(2,6). (9)

The expected payoff vectors for the other three pure-strategy profiles are calculated the same way. This
strategic form is shown in Figure 8.

Figure 6: Cholesterol: friend or foe?
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Figure 7: Firm 1 chooses Low quantity and firm 2 chooses High quantity.

Figure 8: The strategic form of the extensive form of Figure 6,
when Nature sends bad news half of the time.

Randomized strategies in extensive-form games

Behavior strategies

When we studied strategic-form games we saw that randomized strategies, viz. mixed strategies, were
useful because randomized strategies could be Nash equilibria and because without randomized
strategies Nash equilibria could fail to exist. We will find randomized strategies useful in the extensive
form as well. We define a natural conception of strategic randomization in the extensive form called
behavior strategies, in which players randomize independently at each information set.

It is easy to accept that there is a one-to-one correspondence between pure strategies in the extensive
form and pure strategies in the strategic form. It is less obvious what correspondence exists between
behavior strategies in the extensive form and mixed strategies in the strategic form. We will see that
there is a useful correspondence, though not one-to-one, provided our game is one of perfect recall: any
probability distribution over outcomes which can be achieved by a mixed strategy can be achieved by a
behavior strategy and vice versa. This result gives us freedom to analyze an extensive-form game in
whichever framework—strategic or extensive form—is more convenient. In particular we can find the
set of Nash equilibria in an extensive-form game by computing the mixed-strategy Nash equilibria in the
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strategic form.7

How should we define a randomized strategy in the extensive form? A pure strategy specifies a
particular action at each of a player’s information sets. One natural extension of this concept is the
behavior strategy, which specifies at each information set a conditional probability distribution over the
actions available at that information set; i.e. it specifies the probability with which each action would be
taken conditional upon that information set being reached. (A pure strategy would be a degenerate case
in which at each information set the probability distribution at that information set placed full weight
upon a single action available at that information set.) We stipulate that the randomizations at the
player’s information sets are performed independently of one another.8

For example, in the game from Figure 1, a possible behavior strategy for player 1 would specify that
she play Y two-thirds of the time at information set å, play D with certainty at information set ∂1, mix
with equal probability at information ∂2, and play U  four-fifths of the time at each of the two nodes in
information set ∂3. Referring to her information sets in the same order as in the pure-strategy
specification (1), we could write player 1’s behavior strategy as

b1=(‹œYÙ⊕Ù£œN,D,™œUÙ⊕Ù™œD,$/5œUÙ⊕Ù!/5œD). (10)

Similarly, referring to (3), we could write a behavior strategy for player 2 as

b2=(™œlÙ⊕Ù™œr, ëœlÙ⊕Ù¤œr). (11)

Rather than indicate a deterministic path as we did in Figure 2 for the pure-strategy profile in (2), we
depict the behavior-strategy profile b=(b1,b2) by labeling in brackets each branch of the tree with the
probability that the branch is chosen conditional on its source node being reached. See Figure 9.

What are these behavior strategies formally? Player i’s behavior strategy bi specifies at each
information set h˙Hi a probability for each action a˙Aªhº available at h. We denote this probability by
biªa|hº. The set of probability distributions over the set of actions Aªhº is ÇªAªhºº.9 Therefore for each
h˙Hi, biªæ|hº˙ÇªAªhºº. Therefore for every player i˙I and for every information set h˙Hi,

biªa|hº∑
a˙Aªhº

=1. (12)

Player i’s behavior strategy bi specifies such a distribution for each information set in the finite set Hi.
Therefore we can write Bi, the space of player-i behavior strategies, as the Cartesian product:

                                                

7 Kuhn [1953] is the seminal paper concerning these issues. See also Kreps [1990: 380–384], Fudenberg and Tirole [1991: 85–90], and
Myerson [1991: 154–163] for discussions of behavior strategies and their relation to mixed strategies.

8 Note that this is a stronger sense of independence than we encountered with mixed strategies of strategic-form games. There we
assumed that each player randomized independently from every other player. Here we are saying in addition that each player
randomizes at each of her information sets independently from her randomizations at other information sets.

9 For any finite set T we denote by ÇªTº the set of probability distributions over T.
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Bi= ÇªAªhººX
h˙Hi

. (13)

[Compare this to (7), which describes player i’s pure-strategy space.]

When a behavior-strategy profile is played, there need not be a single terminal node reached with
probability one; instead there will be a probability associated with each terminal node. The resulting
probability distribution over outcomes is of interest because it determines the expected payoffs to the
players. To compute the probability distribution over terminal nodes associated with the behavior-
strategy profile we calculate the probability with which each path will be traversed. For a particular
terminal node z we identify the unique path from the initial node to z. At each node along this path a
particular action is required to keep the play on this path. We refer to the relevant player’s behavior
strategy to obtain the probability with which this required action is chosen conditional on reaching that
node’s information set. Because the randomizations at the various information sets are independent of
one another, the probability that this path is traversed from start to finish is the product of the
probabilities associated with the required actions at all the nodes along the path.

For example in Figure 9 to arrive at terminal node z3 player 1 must choose Y at information set å,
player 2 must choose r at ∫1, and player 1 must finally choose U at ∂2. The probabilities associated with
these actions, according to the behavior-strategy profile b=(b1,b2) from (10) and (11), are ‹, ™, and ™,
respectively. Their product, !/6, is the probability attached to terminal node z3. The entire probability
distribution over terminal nodes is calculated in the same way. The resulting probabilities are displayed

Figure 9: The conditional probabilities specified by, and the probability distribution over
outcomes determined by, the example behavior-strategy profile.
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in brackets next to each terminal node in Figure 9. Note that, as required, the sum of these terminal-node
probabilities is one.

Let’s formalize this computation a little. Consider any terminal node z. The path from the initial node
to z encounters a set of nonterminal nodes, which we denote by Xªzº. Each nonterminal node x˙X along
this path belongs to some player iªxº˙I, and to some information set hxfihªxº˙Hiªxº. At each node
x˙Xªzº, a particular action a˙Aªhxº is required to keep the play on the path to z; call this required action
aªx,zº˙Aªhxº. The probability that player iªxº chooses the action aªx,zº, conditional on reaching x’s
information set hx, is biªxºªaªx,zº|hxº. The probability associated with the terminal node z when the
behavior-strategy profile b=(b1,…,bn) is played, then, is

pªz|bº= b iªxºªaªx,zº|hªxºº.∏
x˙Xªzº

(14)

Mixed strategies

Implicit within our discussion of extensive-form games has been another notion of randomized
strategies. When we transformed an extensive-form game into strategic form, we identified each
extensive-form pure strategy with a strategic-form pure strategy. Randomized strategies in the strategic
form are mixed strategies: probability distributions over pure strategies. Therefore mixed strategies—in
the strategic-form sense—are an alternative to behavior strategies as a vehicle to introduce
randomization into extensive-form play.

At first glance, behavior and mixed strategies seem distinctly different. When a player implements a
mixed strategy, she spins the roulette wheel a single time; the outcome of this spin determines which
pure strategy (set of deterministic choices at each information set) she will play. When she implements a
behavior strategy, she independently spins the roulette wheel every time she reaches a new information
set. The space of player-i behavior strategies Bi is given in (13). The space of player-i mixed strategies is
given by Íi=ÇªSiº, which we can rewrite in terms of the actions available at each of her information sets
using (7) and then contrast to Bi:

(15)

We will see that mixed strategies permit correlations across information sets which behavior
strategies cannot accommodate (because they involve only independent randomizations). So it’s not at
all obvious that a restriction of attention to behavior strategies would not involve a loss of generality.
However, we will also see that—in games of perfect recall—the two types of randomized strategies can
be used interchangeably in the sense that any probability distribution over outcomes which can be
achieved by a mixed strategy can be achieved by a behavior strategy and vice versa. We will find as this
course progresses that mixed strategies in the strategic form will provide a more useful perspective in
some contexts and behavior strategies in the extensive form will be more useful in others.
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First we define what it means for two strategies to be equivalent. We will see how, in games of
perfect recall, a mixed strategy generates an “essentially unique” equivalent behavior strategy. Then we
will see how, given a behavior strategy, we can find an equivalent mixed strategy. In fact we will see
that the same behavior strategy can be generated by many different mixed strategies. We will summarize
with a theorem which guarantees that, for games of perfect recall, any probability distribution over
outcomes which can be achieved by a behavior strategy can be achieved by a mixed strategy and vice
versa.

Consider a strategy profile ©=(©1,…,©n), where, for each player i˙I, ©i may be either a pure,
mixed, or behavior strategy. The strategy profile © implies a probability distribution over terminal
nodes. Consider two strategies for player i, e.g. ©i’ and ©i”, ©i’,©i“˙(Bi¨Íi)—perhaps one mixed and
one behavior. We say that ©i’ and ©i” are equivalent if, no matter what strategies ©¥i˙Xj˙I\{i}Ù(Bj¨Íj)
the opponents choose, the strategy profiles (©i’,©¥i) and (©i”,©¥i) both induce the same probability
distribution over terminal nodes.

Mixed strategy § behavior strategy: the role of perfect recall

A behavior strategy bi˙Bi for player i is a specification, for every player-i information set h˙Hi and
every action a˙Aªhº feasible at h, of a conditional probability for that action a at the information set h.
To say that the behavior strategy bi˙Bi and the mixed strategy ßi˙Íi are equivalent would require that,
if player i has chosen the mixed strategy ßi, then for every h˙Hi and every a˙Aªhº, biªa|hº is the
probability that player i would choose action a whenever she reaches information set h.

Note that nothing in the above paragraph refers to what the other players are doing. Equivalence
between a mixed and behavior strategy, then, requires that the conditional probability distribution over
actions at any information set implied by a particular mixed strategy be independent of the strategy
choices of the opponents. Now I’ll show you an extensive-form game in which such an equivalence
cannot possibly hold in general because the conditional probability distribution associated with a
particular mixed strategy depends crucially on the strategy of the opponent.

Consider the two-player game in Figure 10 . Player 1’s strategy space is S1={(l,a),(l,b),(r,a),(r,b)}.
Let h  be player 1’s two-node information set. Consider the player-1 mixed strategy
ß1=™œ(l,a)Ä™œ(r,b). If player 2 chooses D, one-half the time player 1 will be playing the pure strategy
(l,a) and the left-hand node of information set h will be reached, at which player 1 will then choose a.
The other half of the time player 1 is playing the pure strategy (r,b), in which case the right-hand node
of h is reached, at which player 1 chooses b. Therefore if player 2 chooses D, the probability of player 1
choosing a conditional on reaching h is one-half; i.e. pªa|hº=pªb|hº=™.

However, if player 2 chooses U, information set h is reached only half of the time, viz. when player
1’s randomization results in the pure strategy (r,b). So, if player 2 chooses U then, conditional on
information set h being reached, player 1 will always choose b at h; i.e. pªa|hº=0 and pªb|hº=1.
Therefore the conditional probabilities at information set h are not independent of player 2’s strategy.
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Player 1’s mixed strategy allowed her to direct probability from information set h in different
directions depending on whether player 2’s strategy was relevant. (When player 1 chose r, player 2’s
strategy was irrelevant, and player 1 chose b at information set h. When player 1 chose l, player 2’s
strategy was relevant, and player 1 chose a at information set h.) As a result, the direction in which
probability flows out of information set h, and thus the conditional probability distribution over actions
at h, depends on the action of player 2.

Even when the probability distribution over actions implied by a mixed strategy is independent of the
opponents’ strategies, it is possible that the behavior strategy which implements those conditional
probabilities at each information set will generate a terminal-node distribution which differs from the
distribution produced by the mixed strategy; i.e. the behavior and mixed strategies would not be
equivalent.

To see this consider the one-player game in Figure 11.10 Consider the mixed strategy
ß1=™œ(U,l)Ù⊕Ù™œ(D,r). This induces the probability distribution over terminal nodes ™œz1Ù⊕Ù™œz4. The
information set å is always reached; in one-half the cases player 1 chooses U; in the others she chooses
D. Therefore the conditional probability distribution over actions at information set å is given by
pªU|åº=pªD|åº=™. The information set ∫ is always reached; in one-half the cases player 1 chooses l;
in the others she chooses r. Therefore the conditional probability distribution over actions at information
set ∫ is given by pªl|∫º=pªr|∫º=™. The behavior strategy b1 which implements these conditional
probabilities is defined by b1ªU|åº=b1ªD|åº=b1ªl|∫º=b1ªr|∫º=™. However, this behavior strategy
results in the probability distribution over terminal nodes in which each node is reached ¤ of the time. In
fact, no behavior strategy can duplicate the distribution achieved by the mixed strategy. Any such
behavior strategy would have to play each of U and D and each of l and r with nonzero probability at å
and ∫, respectively. However, since the behavior strategy cannot distinguish between the two nodes in
information set ∫, such a behavior strategy must put nonzero probability upon reaching each of z2 and z3.
                                                

10 Of course it seems unreasonable to call this a game, since there is only one player. One player suffices to make the point, and I want to
keep the situation as simple as possible in order not to cloud the issue with needless complexities.

Figure 10: The conditional probability distribution over actions at an information set implied by a
mixed strategy is not necessarily independent of the opponent’s strategy.



Strategies in Extensive-Form Games Page 15

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

In the game of Figure 11 player 1’s mixed strategy allows her to create a different conditional
probability distribution over actions at each of the nodes in information set ∫: At the left-hand node she
chooses l with probability one; at the right-hand node she chooses l with probability zero. A behavior
strategy on the other hand imposes the same conditional probability distribution over all nodes within
the same information set. It is not surprising then that the added flexibility of mixed strategies can
generate probability distributions over terminal nodes which cannot be duplicated by behavior strategies.

The games in Figure 10  and Figure 11 were troublesome for finding a behavior strategy which was
equivalent to some mixed strategy. A common feature of both games is that they do not satisfy perfect
recall. (In both cases, at player 1’s second information set, she has forgotten the action she took at the
initial node.) A mixed strategy specifies a probability distribution over pure strategies, and each pure
strategy can stipulate a particular pair of actions at any pair of information sets. When two player-i
nodes within the same information set are distinguished by an earlier action of player i’s, a mixed
strategy can effectively dictate a different action at each node, even though those nodes are in the same
information set. In games of perfect recall this is not possible: If one player-i information set follows
another, then every node of the later information set must be reached by the same action at the earlier
information set.

Requiring that our games satisfy perfect recall certainly squashes the counterexamples of Figure 10
and Figure 11. It turns out that requiring perfect recall is sufficient to squash all other counterexamples
as well; it is sufficient to guarantee that mixed and behavior strategies are equivalent in the sense we
have defined.

Given that mixed strategies can correlate behavior across information sets, why should behavior
strategies be able to duplicate every terminal-node distribution which can be generated by mixed
strategies? Consider two information sets h and h’ for a player. There are only two classes of cases of
interest: either 1 h and h’ cannot be reached along the same path [i.e. every pair of nodes (x,x’)˙h˜h’ is
unordered by precedence] or 2 there is a path which encounters h and later encounters h’ (or vice versa).
If there is no path which reaches both h and h’, a behavior strategy’s inability to correlate its
randomizations at these two information sets does not limit the distributions over terminal nodes it can
achieve, because at most one of these information sets will be reached in any single play of the game,

Figure 11: No behavior strategy can replicate the terminal-node distribution
of the mixed strategy ß1=™œ(U,l)Ù⊕Ù™œ(D,r).
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and the randomization at the unreached information set has no influence on the outcome. If there is a
path which encounters first h, say, and then h’, then a behavior strategy could effectively correlate its
actions at the two information sets by conditioning its h’ action on its knowledge that h was reached
first. But this correlation would require that the player remember she had reached h, and this recollection
is guaranteed when the game is one of perfect recall.

Mixed strategy § behavior strategy: computing the conditional probabilities

Assume now, and for the rest of the semester (unless directed otherwise on an exam or problem set)
that our game satisfies perfect recall. I will show heuristically how to take a given mixed strategy for a
player and derive an equivalent behavior strategy; then I will formalize, generalize, and qualify the
presentation. (For a more rigorous, nonheuristic demonstration, see the Appendix.) Consider the game in
Figure 12. The players’ strategy spaces are S1={(L,U),(L,D),(R,U),(R,D)} and S2={g,s}. Consider
any mixed-strategy profile ß=(ß1,ß2), where, for any player i˙{1,2} and any player-i pure strategy
si˙Si, ß iªsiº is the probability with which player i chooses the pure strategy si. What are the
corresponding behavior strategies b1 and b2?

Figure 12: Generating a behavior strategy from a mixed strategy.

We can think of probability as a flow that goes into a node and then is parceled out among its
outgoing branches. Computing the conditional probability of a particular action at a node is the same as
asking what fraction of the entering probability exits along that action’s branch. We first seek b1ªL|åº,
the probability with which player 1 chooses L at the initial node å conditional upon her reaching node å.
(Obviously the conditioning is ineffectual at this node, since player 1 always reaches it.) The only
probability which exits node å along the L branch is that associated with pure strategies which specify
that player 1 choose L at å, viz. (L,U) and (L,D). Therefore

b1ªL|åº=
ß1ª(L,U)º+ß1ª(L,D)º

ß1ª(L,U)º+ß1ª(L,D)º+ß1ª(R,U)º+ß1ª(R,D)º
=ß1ª(L,U)º+ß1ª(L,D)º. (16)

The denominator is the sum of the probabilities associated with the pure strategies entering å. Because å
has no predecessors belonging to player 1, this includes all of player 1’s pure strategies; hence the
denominator sums to unity.
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Similarly, player 2’s conditional probability of choosing g at node ∫ is

b2ªg|∫º=
ß2ªgº

ß2ªgº+ß2ªsº
=ß2ªgº. (17)

Note that we ignored the extent to which player 1 might be choosing L or R at å when calculating the
denominator of (17), which I said was the probability entering ∫. So I’ll now be more precise: the
denominator is the probability which enters ∫ over which player 2 has control.11

Calculating player 1’s local randomization toward U at ∂, viz. b1ªU|∂º, is more interesting. In this
case we must take more care when identifying the probability which enters ∂. We use the notion of “a
strategy which does not preclude a particular information set.” For example, the pure strategies for
player 1 (R,U) and (R,D) preclude play ever reaching ∂. (L,U) and (L,D) do not preclude information
set ∂.12 In this case the denominator is the sum of the mixing probabilities associated with the pure
strategies which do not preclude ∂ being reached. The numerator is the sum of the probabilities of the
subset of these strategies which require player 1 to choose U, viz. (L,U). Therefore

b1ªU|∂º=
ß1ª(L,U)º

ß1ª(L,U)º+ß1ª(L,D)º
. (18)

Note a problem with the formula in (18): What if the mixed strategy ß1 we are considering puts no
weight upon either (L,U) or (L,D)? Then the denominator would vanish, leaving the conditional
probability undefined. In this case our specification of b1ªU|∂º and b1ªD|∂º is arbitrary, subject to the
constraint that b1ªæ|∂º constitutes a probability distribution over the actions Aª∂º available at ∂. This
requires only that b1ªU|∂º+b1ªD|∂º=1. When the mixed strategy we are considering precludes an
information set being reached, it is conventional that we determine the local behavior there by summing
the probabilities associated with all the pure strategies which specify the desired action at the
information set in question (whether any one of them precludes the information set or not).13 In this
example, the pure strategies (L,U) and (R,U) both specify U  at information set ∂; therefore, if
ß1ª(L,U)º=ß1ª(L,D)º=0, we would define

b1ªU|∂º=ß1ª(L,U)º+ß1ª(R,U)º=ß1ª(R,U)º. (19)

Now that we have seen in a simple example how a mixed strategy ßi generates a behavior strategy bi,
we can formalize the process. For every information set h˙Hi which belongs to player i, let Siªhº˙Si be
the subset of player i’s pure-strategy space Si whose strategies do not preclude h from being reached. In
                                                

11 We can ignore the extent to which player 1 played L at å because that multiplicative effect on the incoming probability in the numerator
is exactly the effect on the outgoing probability, and therefore the two effects divide out. This is shown explicitly in the Appendix.

12 Choosing one of these strategies does not guarantee that play will reach ∂, because player 2 could choose s. We are only interested in
partitioning player 1’s pure-strategy space into 1 strategies which by themselves (i.e. regardless of her opponent’s play) rule out a
particular information set being reached and 2 the remainder, for each of which there exists a strategy by her opponent such that the
resulting strategy profile reaches the information set in question.

13 This is a simple way to guarantee that biªæ|hº is a probability distribution over the actions at h.
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other words, if si˙Siªhº, then there exists a deleted pure-strategy profile s¥i˙S¥i such that the strategy
profile (si,s¥i) reaches information set h. (I.e. Xªzªsi,s¥iººËh≠õ.)

Consider now some player i˙I and one of her mixed strategies ßi˙Íi. For any information set h˙Hi
we want to compute a conditional probability distribution biªæ|hº over the actions Aªhº available at h.
There are two cases: either 1 the mixed strategy ßi is compatible with reaching h—it puts positive
weight on at least one of the pure strategies which do not preclude h; i.e. ‰si˙Siªhº such that ßiªsiº>0 or
2 ßi puts no weight on these strategies; i.e. suppÙßiËSiªhº=õ. When the mixed strategy is compatible
with reaching h, the conditional probability of choosing some action a˙Aªhº  is the ratio of the
probability leaving along the branch a to the incoming probability to h over which i has control;
otherwise we make the aforementioned conventional, arbitrary assignment when h is never reached by
ßi. In other words,

(20)

You can verify that Ía˙AªhºÙbiªa|hºfi1 for every i˙I, h˙H, and ßi˙Íi.14

We say that the mixed strategy ßi˙Íi determines an “essentially unique” behavior strategy bi˙Bi
because the determination is unique at information sets which are compatible with ßi. Although there is
a high degree of arbitrariness in the definition at other information sets, the assignments at those are
inconsequential because they do not affect the probability distribution over terminal nodes.

Behavior strategy § mixed strategy

Now we take a given behavior strategy bi for player i and construct an equivalent mixed strategy ßi. The
mixed strategy we construct will be but one of many equivalent mixed strategies. We’ll look for a mixed
strategy ßi such that 1 at any information set h, the player’s choice of action from Aªhº has the marginal
probability distribution specified by the behavior strategy, viz. biªæ|hº and 2 the player’s choice at any
information set is made independently of her choice at any other information set.

Remember that a pure strategy si˙Si in the extensive form is a specification at every information set

                                                

14 Implicit in the lower branch of the definition of biªa|hº, viz. the suppÙßiËSiªhº=õ case, is a denominator which sums ßiªsiº over all
pure strategies si˙Si. This sum is equal to one, so it is omitted.
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h˙Hi of a feasible action siªhº˙Aªhº. What is the probability that player i’s randomizations according to
the behavior strategy bi result in a realization of si? Such a realization would require that at every
player-i information set h˙Hi the realized action was that specified by the pure strategy si, viz. siªhº. The
probability that the action siªhº is the realized action at h is biªsiªhº|hº. Because the randomizations are
independent across information sets, the probability that at every information set h the realized action is
siªhº is the product of the probabilities biªsiªhº|hº. In other words symbols, the probability that si is
realized by the behavior strategy bi is

pªsi|b iº= biªsiªhº|hº.∏
h˙Hi

A mixed strategy ßi˙Íi would be equivalent to the behavior strategy bi if it specified that each
player-i pure strategy si˙Si was chosen with the same probability with which the pure strategy si would
be realized by the behavior strategy bi, i.e. if, for all si˙Si, ßiªsiº=pªsi|biº and therefore if

ßiªsiº= biªsiªhº|hº.∏
h˙Hi

(21)

To verify that ßi as defined in (21) really is equivalent to the behavior strategy bi you can substitute (21)
into (20) to obtain an identity in biªa|hº.15

Many mixed strategies give rise to the same distribution over outcomes

Consider the game in Figure 13. Consider two mixed strategies for player 2:

ß2=¤œ(L,U)Ù⊕Ù¤œ(L,D)Ù⊕Ù¤œ(R,U)Ù⊕Ù¤œ(R,D), (22)

ß2’=™œ(L,U)Ù⊕Ù™œ(R,D). (23)

You can easily verify that both mixed strategies give exactly the same behavior
strategy—b1ªL|åº=b1ªU|∂º=™, as computed by (16) and (18).

What is the origin of this degeneracy? Consider two information sets h and h’ for player i on distinct
paths (i.e. so that no node of h precedes or succeeds a node of h’). A mixed strategy allows player i to
correlate his randomizations at the two information sets. For example, one-half the time she may choose
the pure strategy that plays a at h and a’ at h’, and the other half of the time she plays the pure strategy
which chooses b and b’ at h and h’, respectively. Never will she play, for example, a pure strategy which
prescribes a at h and b’ at h’. However, since h and h’ are on distinct paths, player i will never reach
both information sets in a single play of the game. How she correlates her randomizations across these
two information sets is irrelevant to the distribution over terminal nodes. What’s important for behavior
strategies is only the marginal distribution over actions at each information set. Many different mixed
strategies can result in identical marginal distributions.
                                                

15 You might also find it challenging to show directly that the sum of ßiªsiº, as defined in (17), over all si˙Si is unity.
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For example, the matrix in Figure 14a represents mixed strategies by player 2 in the game of Figure
13. The probability in each cell is the value of ß2ªsiº for one of the four pure strategies (L,U), (L,D),
(R,U), and (R,D). The sum of each row is the marginal probability of that action at node å. The sum of
each column is the marginal probability of that action being chosen at ∫. The marginal probabilities pL,
pR, pU, and pD define a behavior strategy. In Figure 14b the probability of (L,U) is set to t and the
entries in the remaining cells are constructed so as to satisfy the given marginal probabilities. We see
that the parameter t is free to vary somewhat while still satisfying the marginal probabilities: there are
many ways to construct mixed strategies which yield these marginal probabilities. For example, let all
four marginal probabilities equal one-half. Then any mixed strategy of the form

ßi=tœ(L,U)Ù⊕Ù(™_t)œ(L,D)Ù⊕Ù(™_t)œ(R,U)Ù⊕Ùtœ(R,D), (24)

where t˙[0,™], will generate these marginal probabilities. The choices for ß2 and ß2’ in (22) and (23)
were but two examples from this family.

Figure 14: (a) Representing player 2’s mixed strategy with one information set’s
action on each dimension. (b) The one-parameter family of mixed strategies

corresponding to particular marginal probabilities.

Kuhn’s theorem: The equivalence of behavior and mixed strategies

We defined two strategies to be equivalent if, for any set of strategies by the other players, they result in
the same distribution over terminal nodes. We just saw that, given a behavior strategy, we could
construct many mixed strategies which are equivalent. Before that, for a given mixed strategy, we
constructed an equivalent behavior strategy; however, we were unable to do so when the game was not
one of perfect recall.

This exposition was merely suggestive and does not constitute a proof of anything. Kuhn [1953]
proves the following theorem: Every behavior strategy is generated by some mixed strategy and every
mixed strategy generates an essentially unique behavior strategy. If the game has perfect recall, then

Figure 13



Strategies in Extensive-Form Games Page 21

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

every behavior strategy is equivalent to any mixed strategy which generates it.16,17

A consequence of this theorem is that we can find the Nash equilibria of a game in whichever
form—extensive or strategic—is more convenient. Consider a conjectured Nash-equilibrium mixed-
strategy profile ßÆ. If ßiÆ is not a best response to ß¥iÆ, then there exists a ßi such that (ßi,ß¥iÆ) yields
player i a better distribution over terminal nodes (and hence a higher expected payoff). Now consider the
behavior-strategy profile bÆ such that, for all j˙I, ßjÆ and bjÆ are equivalent strategies. There exists a
behavior strategy bi which is equivalent to ßi. Therefore (bi,b¥i

* ) yields player i a higher expected payoff
than bÆ. So we see that a mixed-strategy profile is a Nash equilibrium if and only if an equivalent
behavior-strategy profile is.

The restriction of a strategy to a subgame

Often when we analyze subgames we want to know what a strategy profile in the original game implies
about play in the subgame. Let’s discuss the subgame Ì’, of the game Ì from Figure 1, which is
indicated by the shaded box in Figure 15. The strategy profile s of Ì from (6) is not a strategy profile for
this subgame Ì', because it specifies actions at information sets which don’t even exist in the subgame.
To make sense of what it would mean to discuss the strategy profile s with regard to this subgame we
first restrict s, creating a new strategy profile s', by throwing away all those actions which correspond to
information sets that don’t belong to the subgame. (We also say that s’ is the restriction of s  to the
subgame.) In other words, s' is of the form

s'=(s1ª∂1º,s1ª∂2º;s2ª∫1º),18 (25)

and corresponding to our particular example in (6) we write

s'=(D,D;r). (26)
More generally…. Recall that, when we decompose a game in order to form a subgame, we create a

new information partition HÓH by restriction of the original partition H to the residual set of nodes V;
in other words H contains those information sets of the original game which are also in the subgame.19

HiÓH is the set of information sets in the subgame which belong to player i˙I.

                                                

16 See also Myerson [1991: 202–204] for another proof.
17 Kuhn uses a slightly weaker definition of perfect recall than we (and others) have used—and which is actually a misnomer because it

tolerates some amnesia—and proves that his flavor of perfect recall is necessary and sufficient, rather than just sufficient as we state
here, for the equivalence of behavior and mixed strategies. See Kreps [1990: 374–375] for a discussion.

18 This may seem an odd order of actions, because ∫1 comes before ∂1 and ∂2 in the game tree. However, this is consistent with
specifying player 1’s strategy followed by 2’s strategy.

19 See “Extensive-Form Games.”
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A pure strategy si for player i is a map from player-i information sets to feasible actions. Given any
player-i pure strategy si:ÙHi§Ai in the original game, we form si, the restriction of si to the subgame, by
restricting the domain of si to the new set of player-i information sets Hi; i.e. si:ÙHi§Ai and Åh˙Hi,
siªhº=siªhº. Player i’s pure-strategy space in the subgame then is

Si= AªhºX
h˙Hi

. (27)

[Compare this to (7).]

A behavior strategy for player i is a map from player-i information sets to probability distributions
over feasible actions; i.e. Åh˙Hi, biªæ|hº˙ÇªAªhºº. Given any player-i behavior strategy bi, we form its
restriction to the subgame bi by restricting the domain of player-i information sets over which it is
defined to the set Hi of player-i information sets in the subgame: Åh˙Hi, b iªæ|hº=biªæ|hº˙ÇªAªhºº.
Player i’s space of subgame behavior strategies then is

Bi= ÇªAªhººX
h˙Hi

. (28)

[Compare this to (13).]

Return to the example behavior profile b=(b1,b2) defined in (10) and (11) for the game of Figure 15
(as depicted in Figure 9). Similar to what we did in the pure-strategy case, to restrict the behavior
strategy b to the subgame Ì’ we simply throw out those probability distributions over actions which are

Figure 15. Strategy profile restricted to a subgame.
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defined at information sets of the original game which are not present in the subgame. The restricted
strategies are:

b1=(D,™œUÙ⊕Ù™œD), (29)

b2=(™œlÙ⊕Ù™œr). (30)

Note, when comparing (27) to (7) and comparing (28) to (13), that the restricted strategy spaces Si
and Bi are simply projections of the original spaces Si and Bi, respectively, onto the restricted set of
player-i information sets Hi.

Now I’ll explain how to restrict a mixed strategy to a subgame—NOT! This is why we use behavior
strategies in the first place. It’s hard to make sense of what it would mean to restrict a mixed strategy to
a subgame.
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Appendix: Mixed strategy
§ Behavior strategy

Consider player i’s mixed strategy ßi˙Íi in an extensive-form game with perfect recall. Our task is to
compute the conditional probability biªa|hº with which player i will choose action a at information set h
for every player-i information set h˙Hi at which this is defined and action a˙Aªhº which is feasible at
h. (Implicit in the statement of the problem is the belief that these conditional probabilities will be
independent of the deleted strategy profile ß¥i˙Í¥i played by player i’s opponents.) If any behavioral
strategy is equivalent to the mixed strategy ßi, it must be consistent with the biªa|hº so defined.20 In
fact, Kuhn’s [1953] theorem guarantees that this behavior strategy is indeed equivalent to the mixed
strategy ßi.

For any node v˙V, let XªvºÓX be the set of decision nodes on the unique path from the initial node
to v .21 Let H ª v º Ó H  be the set of information sets encountered on the path X ªvº; i.e.
HªvºfihªXªvºº=Ux˙XªvºÙhªxº. For any pure-strategy profile s˙S, let XªsºÓX be the set of decision nodes
on the path of s; i.e. XªsºfiXªzªsºº.22 Let HªsºÓH be the set of information sets encountered on the path
Xªsº; i.e. HªsºfihªXªsºº.

Our event space is the space S of pure-strategy profiles. Let SªxºÓS be the event (i.e. set of strategy
profiles such) that node x˙X is reached; i.e.

Sªxº={s˙S:Ùx˙Xªsº}.23 (A.1)

Let SªhºÓS be the event that information set h is reached, i.e.

Sªhº={s˙S:Ùh˙Hªsº}={s˙S:ÙXªsºËh≠õ}= Sªxº»
x˙h

. 24 (A.2)

Because of perfect recall, all the nodes in any information set are unordered by precedence and therefore
no strategy profile can generate a path which contains two distinct nodes of the same information set.
I.e. Åh˙H, Åx,x’˙h such that x≠x’,

SªxºËSªx’º=õ.25 (A.3)

For any decision node x˙X, let SiªxºÓSi be the projection of SªxºÓS onto player i’s strategy space
                                                

20 A behavioral strategy bi’ which is equivalent to ßi only needs to agree with bi at information sets at which the conditional probability is
defined.

21 Recall that V is the set of all nodes and is partitioned into decision nodes X and terminal nodes Z.
22 Recall that zªsº˙Z is the terminal node reached by strategy profile s˙S.
23 Therefore s˙Sªxº⁄x˙Xªsº; i.e. strategy profile s encounters node x if and only if node x is encountered by strategy profile s.
24 Therefore Sªhº is just the image of h under S, so there is no abuse of notation here.
25 If to the contrary ‰s˙(SªxºËSªx’º), then x,x’˙Xªsº; i.e. x and x’ would be on the same path and therefore—since they are distinct

nodes—ordered by precedence.
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Si; i.e.

Siªxº={si˙Si:Ù‰s¥i˙S¥i, (si,s¥i)˙Sªxº}={si˙Si:Ù‰s¥i˙S¥i, x˙Xª(si,s¥i)º. (A.4)

These are the player-i pure strategies which do not preclude node x˙X. For any decision node x˙X and
any player-i pure strategy si˙Siªxº which does not preclude x, let

S¥iªx,siº={s¥i˙S¥i:(si,s¥i)˙Sªxº}={s¥i˙S¥i:Ùx˙Xª(si,s¥i)º}. (A.5)

This is the set of deleted strategy profiles which can be combined with si˙Siªxº in order to reach x.

Consider any decision node x˙X which is encountered by a strategy profile
s˙S. The strategy profile s’˙S encounters node x  if and only if the two

strategy profiles agree at every previously encountered information set. I.e. Åx˙X, Ås,s’˙S, such that
x˙Xªsº, we have x˙Xªs’º if and only if Åh˙Hªxº\{hªxº}, sôªhºªhº=sôªhº’ªhº.

Omitted.

For all player-i information sets h˙Hi and for all pairs x,x’˙h of nodes in this
information set, the set of player-i strategies which do not preclude the first

node is exactly the set of strategies which do not preclude the second. I.e. Åi˙I, Åh˙Hi, Åx,x’˙h,
Siªxº=Siªx’º.

Assume to the contrary that, for some i˙I, h˙Hi, and some node pair x,x’˙h, there exists
a player-i pure strategy si˙Siªxº such that s iâSiªx’º. Therefore there exists a s¥i˙S¥i such that
x˙Xª(si,s¥i)º. Because Siªx’º≠õ, ‰si’˙Siªx’º such that si’≠si. Consider the player-i information sets
encountered on the path to x, viz. (HªxºËHi)\{h}. The two strategies si and si’ cannot agree at all of
these information sets because, if they did, the two strategy profiles (si,s¥i) and (si’,s¥i) would agree at
all the on-the-path information sets preceding x, viz. Hªxº\{h}, and therefore (si’,s¥i) would also
encounter x by Lemma 1, and this would violate perfect recall.

So si and si’ must differ at some previous information set h’˙(HªxºËHi)\{h}. But this would also
violate perfect recall because x and x’ share an information set, x ultimately succeeds h’ via siªh’º, and x’
ultimately succeeds h’ via a different action si’ªh’º at h’. ó

We use the result of Lemma 2 to justify writing

Åh˙Hi, Åx˙h, Siªhº=Siªxº. (A.6)

I.e. we can meaningfully talk about the player-i pure strategies which do not preclude an information set
h˙Hi.

Lemma 1

Proof

Lemma 2

Proof
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If neither of two player-i strategies preclude a given player-i node x˙Xi, then
the two strategies agree at all on-the-path information sets prior to that node.

I.e. if si,si’˙Siªxº, then Åh˙[(HiËHªxº)\{hªxº}], siªhº=si’ªhº.

From (A.4) we know that there exist s¥i,s¥i’˙S¥i such that x˙(Xª(si,s¥i)ºËXª(si’,s¥i’)º).
Therefore (si,s¥i) and (si’,s¥i’) agree for all on-the-path information sets preceding x by Lemma 1, and
therefore si and si’ agree for all information sets h˙[(HiËHªxº)\{hªxº}]. ó

Let x˙Xi be a player-i node. If neither of two player-i strategies preclude node
x, then the deleted strategy profiles which encounter x are the same for the two

player-i strategies. I.e.

Åsi,si’˙Siªxº, S¥iªx,siº=S¥iªx,si’º.

I will show that s¥i˙S¥iªx,siº fl s¥i˙S¥iªx,si’º. We have x˙Xª(si,s¥i)º. From Lemma 3, si
and si’ must agree at all player-i on-the-path information sets encountered before x. Therefore (si,s¥i)
and (si’,s¥i) agree at all on-the-path information sets encountered before x. Therefore from Lemma 1
(si’,s¥i) must encounter x and therefore s¥i˙S¥iªx,si’º. ó

Lemma 4 allows us to define for all x˙X

S¥iªxº=S¥iªx,siº, (A.7)

where si˙Siªxº is any player-i strategy which does not preclude node x.

For all information sets h˙H and actions a˙Aªhº, let Sªa,hºÓS be the event that sôªhºªhº=a; i.e.

Sªa,hº={s˙S:Ùsôªhºªhº=a}. (A.8)

This is the set of strategy profiles in which the owner of information set h chooses action a if play
reaches h.

The conditional probability we seek is:

biªa|hº=pªSªa,hºËSªhºº
pªSªhºº

, (A.9)

where we restrict attention to information sets h which are reached with positive probability by the
mixed strategy ßi. (I.e. we restrict attention to strategy/information-set pairs such that the mixed strategy
is compatible with the information set.)

First we calculate the denominator. From (A.2) and (A.3), the probability that play reaches h is

Lemma 3

Proof

Lemma 4

Proof
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pªSªhºº= pªSªxººS
x˙h

= p s»
s˙Sªxº

S
x˙h

=S
x˙h

ßªsºS
s˙Sªxº

=S
x˙h

ßiªsiºS
si˙Siªxº

S
s¥i˙S¥iªx,siº

ß jªs jºP
j˙I\{i}

.
(A.10)

From (A.6) and (A.7) we change the ranges of two summations according to

si˙Siªxº § si˙Siªhº, (A.11)

s¥i˙S¥iªx,siº § s¥i˙S¥iªxº. (A.12)

These changes allow a rearrangement and separation of the terms in (A.8), becoming

pªSªhºº= ßiªsiºS
si˙Siªhº

S
x˙h

S
s¥i˙S¥iªx,º

ß jªs jºP
j˙I\{i}

. (A.13)

Now to calculate the numerator…. We transform the event in the numerator to become

Sªa|hºËSªhº=Sªa|hºË Sªxº»
x˙h

= (Sªa|hºËSªxº)»
x˙h

. (A.14)

Then

pªSªa|hºËSªhºº= !S
x˙h

S
s˙(Sªa|hºËSªhº)

ßªsº=S
x˙h

S
s˙Sªhº

s.t. siªhº=a

ßªsº. (A.15)

A very similar chain of reasoning (with an added finesse or two) to what we used in the calculation of
the denominator yields

pªSªa|hºËSªhºº= ßiªsiºS
si˙Siªhº

s.t. siªhº=a

S
x˙h

S
s¥i˙S¥iªxº

ß jªs jºP
j˙I\{i}

. (A.16)

Combining (A.14) and (A.11) yields

biªa|hº=

ßiªsiºS
si˙Siªhº

s.t. siªhº=a

ßiªsiºS
si˙Siªhº

. (A.17)

This is exactly the branch of (20) which corresponds to the compatible strategy case.



Strategies in Extensive-Form Games Page 28

jim@virtualperfection.com Jim Ratliff virtualperfection.com/gametheory

References
Allen, Woody (director) [1973] “Sleeper.”

Fudenberg, Drew and Jean Tirole [1991] Game Theory, MIT Press.

Kreps, David M. [1990] A Course in Microeconomic Theory, Princeton University Press.

Kuhn, Harold W. [1953] “Extensive Games and the Problem of Information,” in Contributions to the
Theory of Games, eds. Harold W. Kuhn and A. Tucker, Vol. 2, Princeton University Press, pp.
193–216.

Myerson, Roger B. [1991] Game Theory: Analysis of Conflict, Harvard University Press.


